
MCS™·S6 ASSEMBLER OPERATING
INSTRUCTIONS FOR

1515·11 USERS

Manual Order No. 9800641 A

Copyright © 1978 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE
INSITE
INTEL
INTELLEC
iSBC

LIBRARY MANAGER
MCS
MEGACHASSIS
MICROMAP
MULTIBUS

PROMPT
RMX
UPI
~SCOPE

PRINTED IN U.S.A/A32/379/10K/CP

PREFACE

This manual is directed to those of you who have read the MCS-86 Assembly
Language Reference Manual, have coded your program and are ready to run the
MCS-86 Assembler. This manual covers the six basic controls that this version of the
assembler has and how to use them. Included in these pages are the error messages
and how to recover from the conditions that caused them. Information relative to
this document that might prove helpful includes these manuals:

MCS-86 Assembly Language Reference Manual
MCS-86 Software Development Utilities Operating Instructions

for ISIS-II Users
MCS-86 User's Manual
MCS-86 Assembly Language Converter Operating Instructions

for ISIS-II Users
ISIS-II User's Guide
PLIM-86 Compiler Operator's Manual for ISIS-II Users

9800640

9800639
9800722

9800642
9800306
9800478

iii

CHAPTER!
BEFORE USING THE MCS-86
ASSEMBLER

CHAPTER 2
INVOKING THE MCS-86 ASSEMBLER

CHAPTER 3
DEFINING ASSEMBLY CONDITIONS
List of Controls 3-1
Default Controls 3-1
Explicit Controls 3-2
Summary of All Assembler Controls 3-3

CHAPTER 4
LISTING FILE AND THE ERRORPRINT
FILE
The Listing File 4-1

Header 4-1
Body 4-4

LOC 4-5
OB1 4-5
Line 4-6
Source 4-6

Symbol Table 4-7
Name 4-8

FIGURE TITLE PAGE

1-1 MCS-86 Assembler Logical Files 1-2
4-1 The Listing File. .. 4-2
4-2 Fields of Information in the Listing File 4-3

CONTENTS I

Type 4-8
Value 4-8
Attribute. .. 4-9

The Errorprint File. .. 4-11

APPENDIX A
ERROR MESSAGES AND RECOVERY

APPENDIXB
LINKING MCS-86 ASSEMBLY LAN
GUAGE AND PL/M-86 PROGRAMS
Conditions and Conventions Common to All

Models of Computation B-1
Conditions and Conventions Specific to Each

Model of Computation B-2
Small Model B-2
Medium Model and Large Model. B-3

Static Data B-3
Local Data B-3
External Data. .. B-3

APPENDIXC
SAMPLE PROGRAM: SENDING
CHARACTERS TO THE CRT

APPENDIXD
RULES FOR SHORTENING CONTROLS

ILLUSTRATIONS & TABLES

TABLE TITLE PAGE

2-1 MCS-86 Assembler Parameters (Rules of Thumb) 2-1
3-1 MCS-86 Assembler Controls Summary 3-3

v

CHAPTER 1
BEFORE USING THE MCS-86

ASSEMBLER

If this is the first time that you have used the MCS-86 assembler, check your Intellec
Microcomputer Development System (MDS) for these items as they are required for
assembler operation:

64K RAM memory
a console device, such as a CRT or a TTY
(at least) one disk drive and
ISIS-II with a version number of 2.2 or later

You may want to add a lineprinter to this configuration, however, this is the
minimum configuration for the MCS-86 assembler. For more detailed information
on how to use the MDS, consult the ISIS-II User's Guide.

Next, check that the software that you need, the MCS-86 assembler and its overlays,
is on a diskette. You can leave it on that diskette or you can copy it to the system
diskette, as your needs dictate. Another important piece of software to check for is
the Relocation and Linkage software, either QRL-86 or LINK86, and LOCate86. Be
sure to label the diskette appropriately for ease of identification later on. This is a
list of the primary pieces of software needed and to point out that it is wise to know
what it is that you have and where it is.

Have your MCS-86 Assembly Language Reference Manual nearby for that docu
ment and this one are interdependent. This manual assumes that you have the
knowledge gained from study of the language manual. For instance, the successful
use of the assembler is more likely if you are familiar with the directives, SEGMENT
and ASSUME. Since you will need to use at least some of the Relocation and
Linkage software package, the manual containing that information should also be
nearby (and have been read).

This manual instructs you in the use of the MCS-86 assembler through the use of the
six basic controls. It is according to these controls that the assembler creates an ob
ject file. Assembly language instructions are converted to object code. In addition,
the assembler creates an assembly listing file.

This listing file contains information on your code, your source file, a summary
of assembly errors, if any, and the symbols that you have defined in your source
program.

During assembly, the MCS-86 assembler creates files for its own use that you need to
know about. Their names are not crucial to your program design and execution but
their location (on the diskette) is, for they are always created (and deleted from) the
diskette which contains the assembler. There is a restriction on the location of the
assembler and its overlays, for they (ASM86, ASM86.0VO, ASM86.0Vl,
ASM86.0V2), must be on the same diskette. The diskette may be on any drive.
There is no restriction as to where the listing and the object files are directed, but the
default conditions send both these files to the same drive as the source file.

The MCS-86 assembler is a two pass assembler. The first pass reads your source pro
gram and produces the temporary file, ASM86I. TMP. This file provides com
munication between pass 1 and pass 2. If you want your list file to contain your sym
bol table, ASM86X.TMP is created by the overlay file, ASM86.0Vl. Then
ASM86.0Vl sets up the object file and the symbol table. In pass 2 the source file is
completely read and formatted for printing. This final pass resolves all forward
references and generates the object file, listing file and error messages. Both passes

1-1

Before Using The MCS-86 Assembler MCS-86 Assembler

1-2

catch errors but output occurs only after pass 2. The temporary files, ASM86I. TMP
and ASM86X.TMP, are deleted at the end of pass 2. Figure 1-1 displays the MCS-86
assembler and its related files.

SOURCEFILE I----tl~ ASM86

ASM86.0VD

PASS 1

ASM861.TMP

ASM86.0V1

I
L ASM86X.TMP

PASS 1.5 PASS 2

Figure 1-1. MCS-86 Assembler Logical Files

LIST FILE

OBJECT FILE

ERROR PRINT

CHAPTER 2
INVOKING THE MCS-86 ASSEMBLER

To invoke the MCS-86 assembler, enter this command at the keyboard:

- [:drivenumber:JASM86 [:drivenumber:Jyourprogram

In the above format of invoking the assembler, the hyphen is the ISIS-II command
prompt that signals that the operating system is ready to accept a command (in this
case a command to load and execute the assembler.) The phrase [:drivenumber:J
that appears twice in this command indicates where the assembler resides and where
the source file resides if those locations are other than drive O. The square brackets
[] indicate that drivenumber is an optional item in the command. ASM86 must be in
the command line as it is the filename of the assembler program itself. The final item
is your program, which is the filename of your program to be assembled. This com
mand line does not have controls indicated on it; for a detailed discussion of the con
trols see the next chapter.

Immediately after you enter the command line, the assembler sends its sign-on
message to the console:

ISIS-II MCS-86 ASSEMBLER, V1.0

When the assembly of your program is complete, the sign-off message and error
summary are sent to the console in this format

ASSEMBLY COMPLETE,NO ERRORS FOUND

If the assembler detected errors, the message is:

ASSEMBLY COMPLETE,1 ERROR FOUND

(The number of errors quoted varies according to the number of errors
encountered.)

It is likely that you will want to use the assembler as specified above for it is the
default operation, an automatic mode of operation.

There are some restrictions however that you need to know about. Since these
restrictions are mostly quantitative they are noted here in table form.

Table 2-1. MCS-86 Assembler Parameters
(Rules of Thumb)

Source file:

Item

Characters/line

Characters 110
Symbols!module

Source lines!program
Cont. lines! statement
Characters! string
Characters! classname

Number

128 (including CR!LF); if more are entered, they
are processed but not listed and an error message
noted.

31; if more are entered, they are ignored.
400 (approximately); relative to the length of the
name and type of symbol.

No assembler imposed limit.
No assembler imposed limit.
40
40

2-1

Defining Assembly Conditions MCS-86 Assembler

2-2

Table 2-1. MCS-86 Assembler Parameters
(Rules of Thumb) (Cont' .d)

Source file:
Item

PROC/SEG nesting
Items/PUBLlC,EXTRN,PURGE
Items/GROUP
Codemacro size

SEGMENT or PROC size
Record limit
Record size

Listing file:

Item

Characters/list file line
Pages/file
Lineslfile
Errors reported /line

Internal:

Item

Items / storage
initialization-list
Expression complexity

Memory required
Dup nesting

Intermediate file size.
ASMB61.TMP
ASMB6X.TMP

Number

16 (up to 16 total open at one time).
No assembler imposed limits.
36 SEGs per GROUP
60 bytes (approximately) of assembler generated
code.
No assembler imposed limits.
16 fields.
16 bits.

Number

120; if more are entered, wraparound* occurs.
No assembler imposed limit.
No assembler imposed limit.
10

Number

Cannot exceed 16.
Relative to stack size; with normal operation,
this is not a practical consideration
64K
Up to Blevels of nested parentheses.

Proportional to source file size
30 (approximate) characters per user-defined
symbol.

*Wraparound allows you to enter more than 120 characters on a list file line; it places the
characters that are in excess on the next line.

CHAPTER 3
DEFINING ASSEMBLY CONDITIONS

List of Controls
There are six basic controls for the MCS-86 assembler that define files or identify
devices and generally act as programming aids. Each control is a keyword that is
typed on the same line as the line invoking the MCS-86 assembler. Each control can
be on or off depending on what kind of (optional) output you require and where you
want it. These controls can be entered as many times as you like. The assembler
ignores all but the final (rightmost) definition of each control. If however, a control
is other than the ones noted in this chapter, then the assembler terminates and the
command must be re-entered. The ISIS-II restriction on the length of lines that
invoke a program applies. See your ISIS-II User's Guide if you are not familiar with
it.

The six controls are listed here:

OBJECT or NOOBJECT (to create or not to create an object file)
PRINT or NOPRINT (to create or not to create a listing file, often

called a list file or a print file)
PAGING or NOPAGING (to create or not to create numbered pages in

that listing file noted above)
SYMBOLS or NOSYMBOLS (to append or not append the symbol table at

the end of the listing file)
NOERRORPRINT or ERRORPRINT (not to create or to create a list only of the

errors encountered by the assembler)
NODE BUG or DEBUG (not to put or to put all local symbol

information in object file for relocation and
linkage software)

Default Controls
In this list, the left column of controls is the default or automatic mode of opera
tion. These are the controls that are invoked with the invocation of the asembler. If
you want to define conditions other than those, you must specify them in the
command.

The formal syntax, then, for invoking the MCS-86 assembler with controls is:

-[:devicenumber:]ASM86 [:devicenumber:]yourprogramname [control-list]

Remember, if you choose not to enter any controls from the above control-list the
default controls are implied, i.e., they are automatic. This means that the controls
on the left side of the list are in effect. If, however, you specify any control from
above, it must be entered as shown. How to shorten those controls is in table 3-1.
Controls must be separated by at least one blank character, either a space or a tab.
Further, if the control specifies a file then the filename must be in parenthesis. The
ISIS-II conventions on filenames and devicenames (diskettes) apply here, also. See
your ISIS-II User's Guide if you are not familiar with them.

An example of invoking the MCS-86 assembler is

-ASM86 LOOT.SRC OBJECT PRINT PAGING SYMBOLS

The command generates the object file LOOT.OBJ on drive 0, creates a listing file
LOOT .LST with paged information and symbol table and error messages within the
body of the list file. It is identical to this command:

-ASM86 LOOT.SRC

3-1

Defining Assembly Conditions MCS-86 Assembler

3-2

This is due to the automatic or implicit invocation of the default controls. It is wise
to note that the object and listing files are created on the same drive as the source
file.

Explicit Controls
If you want to define filenames or devices other than the default, you must specify
them in the command. An example of specifying filenames is to define output files
with different names from the input file as this command does

-ASM86 LOOT.SRC OBJECT (COOT.OBJ) PRINT (COOT.LST) PAGING

Here you obtain object and listing files called COOT .OB] and COOT .LST, respec
tively. Filenames are indicated by parentheses; if you include a filename without a
parenthesis the command cannot be read correctly.

SUMMARY: TO INVOKE THE ASSEMBLER,GENERATE AN OBJECT FILE
AND CREATE A PAGED ASSEMBLY LISTING FILE IS THE DEFAULT
OPERA TION. THE INVOCATION COMMAND IN ITS MOST ABBREVIATED
FORM IS

-ASM86 YOURPROGRAM

THIS IS THE COMMAND IN ITS MOST EXPLICIT FORM

-:DEVICENUMBER:ASM86 :DEVICENUMBER:YOURPROGRAM CONTROL (FILENAME)
In programming, however, often you must consider both time and storage or
memory space when you assemble your program. You may require flexibility
beyond that in the default conditions. With this in mind, you can direct the files
created during assembly to be located on different devices or drives, as your system
permits. If storage space is at a premium and this is your first pass at assembling
what may amount to a large program, you probably do not want to produce object
code in your first assembly; this command accomplishes that

-ASM86 LOOT.SRC NOOBJECT

With this command you verify your program without wasting time or space.
Another example of negating the default control is

-ASM86 LOOT.SRC NOPRINT

This command suppresses the creation of the listing file. As a further consequence it
also invalidates ERRORPRINT, PAGING and SYMBOLS.

If you want your object code to reside on a drive other than the one that contains
your source code, this command does it

-ASM86 LOOT.SRC OBJECT (:F1 :LOOT)

The object file in the above example is on drive 1, the source file is on drive O.
Similarly, if you want your object code to have a filename distinguished from the
source code entirely, you must specify it

-ASM86 LOOT.SRC OBJECT (COOT)

If you want the listing file generated and output to a device other than the default
(the same device as the source file) you specify another drive, or as in this case, the
lineprinter

-ASM86 LOOT.SRC PRINT (:LP:)

This results in the list file printing on the lineprinter.

MCS-86 Assembler Defining Assembly Conditions

It is likely that a listing file with a different name than the source file could be a great
convenience. Here is the command that accomplishes this:

-ASM86 LOOT.SRC PRINT (:F1 :SOOT.LST)

If you want a summary of errors but not a listing file this is the command:

-ASM86 LOOT.SRC PRINT(:BB:) ERRORPRINT

Note that the :BB: is the "byte bucket"; ISIS-II ignores 1/0 commands from and to
this "device" . It is a null device.

SUMMARY: TO "TURN OFF" OR TO OVERRIDE A DEFAULT CONTROL,
YOU MUST INCLUDE EXPLICITLY THE CONTROL, THE DEVICE, OR
THE FILENAME THAT IS DISTINCT.

Summary of All Assembler Controls
The following table summarizes the controls and their shortened forms for the
MCS-86 Assembler.

Table 3-1. MCS-86 Assembler Controls Summary

OBJECT[(FILE.EXT)] An object code file is generated and is output to the
OJ specified diskette file. If neither OBJECT nor

NOOBJECT is put on the command line, OBJECT, as the
default, is assumed. The result is that the object file has
the same filename as the source file with an extension of
OBJ and resides on the same diskette as the source file.

NOOBJECT No object code is generated. NODEBUG is implied.
NOOJ

PRINT[(FILE.EXT)] A listing file is generated and is output to the specified
PR file or device. If neither PRINT nor NOPRINT is put on the

command line, PRINT, as the default is assumed. The
result is that the listing file has the same name as the
source file and resides on the same diskette as the
source file.

NOPRINT The listing file is suppressed. The result is that
NOPR NOERRORPRINT, NOPAGING, NOSYMBOLS are

implied.

PAGING The listing file is formatted into numbered pages with
PI headers at each page break. If neither PAGING or

NOPAGING is put on the command line, PAGING, as the
default, is assumed. The result is that the listing file has
sequentially numbered pages with header information at
the top of each page. PAGING is suppressed if NOPRINT
is put on the command line.

NOPAGING The listing file does not have formatted pages. The
NOPI symbol table is separated from the source file by 4 lines.

SYMBOLS The symbol table appears at the end of the listing file. If
SB neither SYMBOLS or NOSYMBOLS is put on the

command line, SYMBOLS, as the default, is assumed.
The result is that at the end of the listing file is the
alphabetized symbol table. SYMBOLS is suppressed if
NOPRINT is put on the command line.

NOSYMBOLS No symbol table appears at the end of the listing file.
NOSB

3-3

Defining Assembly Conditions MCS-86 Assembler

Table 3-1. MCS-86 Assembler Controls Summary (Cont'd.)

NOERRORPRINT[(FIL E)l No summary of the errors encountered appears. If
NOEP neither NOERRORPRINT or ERRORPRINT is put on the

command line, NOERRORPRINT, as the default, is
assumed.

ERRORPRINT[(FILE)l A list that summarizes the errors encountered in
EP assembly concludes the listing file. ERRORPRINT is

supressed if NOPRINT has been put on the command
line. If you have specified :CO: as the device where the
file is to be created, then no header appears.

NODE BUG No local symbol information is placed in the object file.
NODB If neither DEBUG or NODEBUG is put on the command

line, NODEBUG, as the default, is assumed.

DEBUG Local symbol information is placed in the object file for
DB symbolic debugging.

3-4

CHAPTER 4
LISTING FILE AND THE

ERRORPRINT FILE

The Listing File

The listing file, often called the list file or print file, provides you with information
on the assembly of your program. As a programming tool, it presents both
assembler generated information and user generated information. The wealth of in
formation possible in the listing file is great; the entire span of the MCS-86 assembly
language can be contained within its pages. You most often will consult it as a
debugging tool; however, you will also find that it exists as an educational tool. To
serve these purposes and yours better it has a format that is suitable for hardcopy
documentation.

The example in this chapter contains some of the most used features of the MCS-86
assembly language; however, it does not cover all of them. Use this example to iden
tify where and how you might find information in the list file. As you use this
chapter it is important to note that the primary purpose of this example is to
illustrate the list file; it is not intended as an example of excellent programming
techniques.

Generally speaking, the listing file contains your program and your symbol table.
An error summary concludes the listing file in addition to the object code.

Header

Header information is at the top of the page. It identifies the assembler program
name and the page number. The width of the page of the list file is 120 columns; the
length of the page (if PAGING has been specified) is 60 lines long. Figure 4-1 notes
the header lines, width and length of the list file.

Additional headerlines display this information.

ISIS-II MCS-86 ASSEMBLER Vl.0 ASSEMBLY OF MODULE YOURPROGRAM
OBJECT MODULE PLACED IN :DEVICENUMBER:YOURPROGRAM.OBJ
ASSEMBLER INVOKED BY :DEVICENUMBER:YOURPROGRAM.86S

Beneath the headerlines is another line that prints out the names of the fields of in
formation. Strictly speaking these are known as fields of information; in visual
terms it is easier to see them as columns. Because there is so much information, it is
helpful to think of it in these broad terms:

• any information to the left of the line number is assembler generated

• any information to the right of the line number is user generated.

Figure 4-2 notes the fields of information in the list file.

4-1

List File And The Errorprint File MCS-86 Assembler

4-2

"YPROG 1 1----HEADER INFORMATION

ISIS-II "Cs-a, ASSE"BLER Vl.1 ASSE"BLY OF "ODULE "'PROG
OBJECT "ODULE PLACED IN IF5:"YPROG.OBJ
ASSE"BLER INYOKED BY: ASMS' :FSIM'PROG.A8' PRINT(:LPI)

LOC OBJ

REG
-B881

IlBB

•
"ACRO
• •

BBBB (1 BB
11
)

BIU B3
BU5 BA

LINE

1
2
3
4
5 ,
7
S
9

11
11
12
13

14

SOURCE

count EQU Cl(
110'0.1 EQU -88IH
o.r_size EQU 18BH·

r17 RECORD 519n11,lo1l7:7
EXTRN processINEAR,svste,,:FAR

CODEMACRO d7 YQluelO
r17 <B,yo.lue>
ENDM

do.to. SEG"ENT PUBLIC ' Do.to.'
I nit 10.1 DB 188 OUP (1)

top DB 3,11

o

r
m z
G') 15

16 wo"bQt -t
INSTRUCTION OR ILLEGAL YARIABLE DEFINITION % . ••• ERROR .37, LINE '16,

BU6 534251
BU' (11

8181
BlBl
(5

4UB
"8.

)

BSBB
)

BUD 648B
116F 6011----
8173 B7
8174

BIBB (256
11?1
)

•• aA 1 [1

R
R

R

UNDEFINED
17
18
19

28
21
22
23
24
25
26
27

2B
29
3.
31
32
Jl

so."

ItOP
I i top

es_bo.se
do.to.

extro.
o.rro.yl

Itxtro.

code

DB 'SBQ'
OW 18 OUP (1,3.5 DUP (44H,55H).5)

DW top
DO I top
d7 87H
OW extro.

ENDS

SEGMENT
OW o.r _s I ze DUP (1)

ENDS

EGU £81 Ol Ol", 1 [8IC+'.1

SEGMENT PUBLIC 'code'
ASSU"E OSldo.to..CSlcodlt

BIll R J4 ds_bo.se OW do.to.

II
0)
o
C
Z
m
en

o 1-1 .""".'"""'.,.,.a-----WIDTH = 1203doLUMNS--p-Ro-c--F-A-R-----------I1~0 60
1812 B9F'11 37 "010' count.u'_size-l1
IIB5 8BD9 38 "010' BX. count
IBI7 39 init_loopl
IIB7 9891989191'1 41 "010'
8.10 E2F8 41 LOOP
118F CB 42 RET

B.1B
IBl5
Bl19
BIlE
8821
Bl22

2E8EU ••••
8£867481
UB2BB---
EUBII
92
U88BB----

181B

R
R
R
E

E

43 init ENDp
44
45
46
47
4a
49
58
51
52
53

code

"0.,
"0"
CALL
CALL
XCHe
CALL
ENOS

END

Figure 4-1. The List File

o.r 1 bx. I 10' 0.1
inlt_loop

08. dS_bo.se
ES. es_bo.s.
inlt
process
AIC,DX
syate"

MCS-86 Assembler List File And The Errorprint File

ADDITIONAL
HEADER

LINES

ISIS-II "CS-86 ASSEMBLER Vl.B ASSEMBLY OF MODULE MYPROG
OBJECT MOOULE PLACED IN IF5:MVPROG.OBJ
ASSEKBLER IHVOKED B'I': ASK86 :F5:tlVPROG.A86 PRIHT(:LP:)

..----.... LOC OBJ LINE SOURCE

NAMESOF
FIELDS OF

IFORMATION.

REG
-BBBB

BlBB

•

BBIIIB (1 BB
??
)

BBb4 B3
BBb5 BA

1
2
3
4
5
b
7
S
9

lB
1 1
12
13

14

15
16

count EGU
i 114 \ EGU
o.r_size EGU

r 17 RECORO
EXTRN

CODEMACRO
r17
ENDM

CI(

-SHIH
lBBH

slgn:L\ow7:7
proc.ss1HEAR.systeft:FAR

d7 1141u.:0
(B.1I4\U.>

data SEGMENT PUBLIC '04t4'
Initi4\ DB tBB OUP (?)

top DB 3.19

WO"b4t
•• '" ERROR 137, LINE 116. UHDEF

17
18
13

lED INSTRUCTION OR ILLEGAL VARIABLE DEFINITION

IilBb6
BB69

534251
(1 B
BlBB
B3BB

(5
44BB
:1:11111

IASSEMBLERI
GENERATEDI

11160
816F
8173
81 ?4

)

B598
)

'41111
6091---
B7

BBBB (256
??11

IiiBIiiA I []

BBBB

111 Iii Iii 2
B8B2 B9F6BB
BBBS 8B09
BBB7
88B? 989B98989B9B
BBBO E2F8
8BIIF CB

11111111 2EeEIEIIIIIIB
BUS 8EB674Bl
lIB 19 9AB2BB---
BB1E ESBBraB
BB21 92
BB22 9ABBBB----

8818

R
R

R

R

R
R
E

E

10.... DB • SBQ'
OW 10 OUP (1.3,5 OUP (44H.55H)'5)

I top OW
i itop DO

d7
.s_bo.s. OW
dato.

.xt.r4 SEilMENT

USER
GENERATED

top
I top
87H
.xtro.
EHOS

28
21
22
23
24
25
26
27 array1 OW o.r _SI ze OUP (?)

.xtro. ENOS

EQU ES I .. ,.,,1 [ex. 11111

28
29
llii
31
32
33
34
35

cod. SEGMENT PUBLIC 'cod.'
ASSUME OS:do.to..CSlcod.

ds_bo.s. OW do.to.

l6
37
3S
39
4B
41
42
43
44

Inlt PRoe
... Oil

" Oil
init_loop:

" Oil
LOOP
RET

init EHOp

4:1 .t- t. "OY

46 "Oil

47 CALL
48 CALL
49 XCHG
5B CALL
51 cod. ENOS
52
53 EHD

FAR
count.a.r siz.-ll1
BX.count

o.rlbx. i 1141
init_loop

DS. d._b
ES, .I_bo.s.
init
proc.11
AX.OX
syst."

st4rt

Figure 4-2. Fields of Information in the List File

4-3

List File And The Errorprint File MCS-86 Assembler

4-4

Body

The body consists of columns of information organized typically as previously
described. The following is a discussion of the specifics of the information
displayed.

These names identify the fields of information: LOC, the location counter; OBJ, the
object code; LINE, the line number and SOURCE, the line of source code.

They appear in this format:

LOC OBJ LINE SOURCE

LOC

The locations counter is the hexadecimal number that represents the offset from the
beginning of the SEGMENT being assembled. In lines that generate object code and
have LABEL or PROC, the value is the one at the beginning of the line. For ORG
lines, the value shown is the new value. The following line of a list file displays a line
that has a PROC.

LOC OBJ LINE SOURCE

BIiI1iI2 36 Inlt PROC FAR

For any other line (such as the second or third line in a Dup construction or a con
tinuation line) there is no display, as is shown in the following figure.

8869 (18
IItBB
BlBB

(S
44BS
55 ••

)

SSBB
)

OW 18 DUP (1.3,5 OUP (44H,5SH),5)

If there is '----'in the LOC field, you have coded either an open or close SEGMENT,
as in the illustration that follows.

26

If the LOC area is blank, either a directive or a comment has been encountered by
ASM86. In this case the directive ASSUME, has been coded.

33

MCS-86 Assembler List File And The Errorprint File

OBJ

The object code is the hexadecimal number that displays the object bytes generated
in the assembly. If there is ,----, in this column, this indicates relocatable paragraph
numbers. To the right of the OBJ field of information can be found either an R or
an E or a blank area. R indicates relocatable code has been generated; E that exter
nal code had been generated. An E takes precedence over an R on lines with both
kinds of code. The following figure illustates the location of the dashes and E and R.

881:5 8E967481
9819 9A9298----

R
R

46
47

PlOV

CALL
ES I •• _b~ ••
init

Object code generated by Dups constructs has a spechl format. Whenever a DUP
field begins, a left parens appears in the left column of the object field, followed by
the count in decimal numbers. The content bytes are presented left-justified on the
following lines, concluded with a right paren in the leftmost column. These bytes ap
pear reversed here since the 8086 reverses bytes. For nested Dups, the left paren
number and right paren are indented one column for each nesting level, but the con
tent bytes are never indented.

8169 (18
8188
8388

< 5
4488
:1:1 ••

)

8588
)

EQUATE

19 OW 18 DUP (1,3,5 DUP (44H,:5SH),S)

This field is not named as such but is composed of one-half of the LOC field and
one-half of the OBJ field. Basically, if the information that you are looking at is
aligned with column three on your listing file, you've got EQUATE information.
REG appears here if the right side of the EQU is a register.

LOC OBJ LINE SOURCE

REG count EQU Cl(

Variable or label equates can have segment override and indexing attributes here; a
colon after the number (the value) signals an override, the square brackets signals an
index attribute.

.IIAIC J 31 .. ,.1b" EQU ES I .. ,.,. 1 C Bl(+ 'I J

You can equate to MACRO, RECORD, RFIELD, EXTRN, SEGMENT and
GROUP and they can all appear in this field. In the following example the equate
field contains I to indicate the continuation of the codemacro definition beyond the
first line.

8
9

18

CODE"RCRO
r17
END"

d? v~lu.:D
<8,vnlu.>

The pound sign, I, also indicates a record definition as is noted below.

• :5 r17 RECORD slgnll,low?:?

4-5

List File And The Errorprint File MCS-86 Assembler

4-6

The equate field can contain a negative number as in indicated in this illustration of
an equate to a negative number.

-BUB 2 ivo.l EQU -8BBH

Line

The line number, the decimal number indicating each input line, starting from 1 and
incrementing with every source line. If there is no information listed, the number in
creases by one anyway.

-BUB
818B

Source

2
3
4

i yo. 1 EQU
o.r_size EQU

-881H
tBBH

A copy of the source line that you entered except for tabs and illegal non-printing
characters. For ease of reading in this list file, tabs are expanded with sufficient
numbers of blank spaces to place the character (that you entered) immediately after
the tab to column 1 modulo 8. For those of you who still hesitate when you read a
phrase like that, this means columns 9, 17,25 etc. What is accomplished is that the
source code information remains within the column noted as SOURCE.

BUlB (256
????
)

26
27

28

extro. SEG"ENT
o.rro.yl DW o.r_size DUP (?)

extro. ENDS

Errors are included in the list file in the exact order in which they occurred. They are
documented by error lTUmber, line number, (pass number if other than the first
pass), and error message. Explanatory text detailing recovery from error conditions
is in Appendix A.

15
16 woftbot

••• ERROR '37, LINE '16, UNDEFINED INSTRUCTION OR ILLEGAL YARIABLE DEFINITION
17

BI" 534251 18 50.1'1 OS 'SSQ'

MCS-86 Assembler List File And The Errorprint File

LIST OF
SYMBOLS

Symbol Table

The symbol table follows the listing of the source and object codes. It is preceded by
either four blank lines (NOPAGING control) or one entire blank page (if you have
selected the PAGING control). Header information identifies the MCS-86
Assembler YOURPROGRAM and the page number. The listing itself is
documented as the SYMBOL TABLE LISTING. Beneath that title there are col
umns of information; they are:

NAME TYPE VALUE ATTRIBUTES

The list of symbols is organized in alphabetic order, using the ASCII ordering of
characters except for underscore which comes first. Reserved names are not included
unless they were redefined in some way.

HEADER
INFORMATION

S""IOL TAILE LISTING -------
HA"E T"PE

??SEG SEGMENT
AR_SIZE HUMBER
AR1BX V IIORD
ARRAY1. Y IIORO
CODE. SEGMENT
COUNT REG
07. C "ACRO
DATA . SEGMENT
DS_BASE \I IIORI>
ES_BASE \I IIORO
EXTRA SEGMENT
11 TOP Y DWORD
INIT . L FAR
I N IT _LOOP L HEAR
INITIAL Y BVTE
1 TOP. Y IIORO

""PROG

VALUE

BlBBH
lllAH
BBIBH

CX

BBBIH
B174H

816FH
BlI2H
BBl7H
BIIBH
816DH

IYAl. HU"BER -BaaBH
LOIn. R FIELO BlH
PROCESS l HEAR BlIIH
R17 RECORD
SAM II BYTE BU,"
SIGN. R FIELD B7H
START L HEAR BBtlH
SYSTE". L FAR BIIIH
TOP Y BVTE 8U4H
WO"BAT. -------
ASSEMILY COMPLETE, 1 ERROR

PACE

ATTRIBUTES .. ~ INFORMATION~ I FIELDS OF I
SIZE-BBlBH PARA PUBLIC

ES I [BX)
EXTRA
SIZE-BB27H PARA PUBLIC ' cod.'

• OEFS-1
SIZE-B17'H PARA PUBLIC ' D6t6'
CODE
DATA
SIZE-82BBH PARA
DATA
CODE
CODE
OATA
DATA

R17 WIDTH-7
EXlRH
SIZE-l "'10TH-I
DATA
R17 WIDTH"l
CODE
EXTRH
DATA
--UHDEF IHED--

FOUHD

4-7

List File And The Errorprint File MCS~86 Assembler

4-8

Name

The name of the symbol appears here as it was entered; periods and spaces are added
to fiII out the field if the name is too short. A name may be up to 31 characters long.

SEGMENT SIZE-BBBBH PARA PUBLIC
HUMBER 81 BOH

Type

This is the kind of symbol that you have defined and it may be any of these:

ABS, BYTE, WORD, DWORD for variables (V), NEAR, FAR for labels (L),
NUMBER for numbers, REG for registers, C MACRO for codemacros, ------- for
an undefined symbol and SEGMENT, RECORD, GROUP RFIELD can appear
here.

External symbols have the type that appears in the EXTRN statement. This area of
information may be shifted to accomodate the length of the NAME.

AR1BX Y WORD BaIAH ESI [ax)

CODE. SEGMENT SIZE-BD27H PARA PU8L IC ',cod.'
COUNT REG CX
1>7. C "ACRO I DoEFS-1
HIlT . L FAR BDB2H CODE
I H IT LOOP L HEAR BU7H CODE
INITIAL Y BVTE BBBIH DATA
I VAL. HU"BER -S8BBH
LOW? R FIELD UH R17 W IDTH=?
R17 RECORD SIZE-1 LlIOTH-S
foJO"8AT, ------- --UHDEFIHED--

Value

Variables and labels have their offset written as a hexadecimal number that contains
the value of the number, not the value of the offset. (The value can be negative.)

IITOP
I HIT.

Y OWORD Bl'FH DATA
L FAR BBB2H CODE

RFIELDS have the shift count for the record field as shown on the next line.

LOW? .. R FIELD BBH R17 WIDTH:?

If the VALUE is blank, you have coded one of these items: SEGMENT, GROUP, C
MACRO,RECORD or an undefined symbal.

??SEG .
R17 .
foJOMBAT.

SEGMENT
RECORD

SIZE-BBBSH PARA PUBLIC
SIZE-1 LlIOTH-S
--Uf'lDEF INED--

EXTRN symbols always have the value of OOOOH as is shown in the following figure.

PROCESS
SYSTEM.

L HEAR
l FAR

BIBIH EXTRM
BBBSH EXTRH

MCS-86 Assembler List File And The Errorprint File

Attribute

If you have coded a SEGMENT (see the TYPE column) the ATTRIBUTE field con
tains a hexadecimal number for the number of bytes contained in the segment.

CODE. . . SEGKEHT 51ZE a aa27H PARA PUBLIC 'cod.'

Following the size is an additional kind of attribute information. Alignment
specification is indicated by any of these terms: PARA (for paragraph), PAGE, IN
PAGE, BYTE or WORD.

DATA .
EXTRA

SEGKEHT
SEGKEHT

SIZE-a17'H PARA PUBLIC 'Dete'
SIZE-82BBH PARA

Relocatability distinctions follow the alignment specifications and can be any of
these possibilities:

blank, PUBLIC, COMMON, ABS, MEMORY, STACK

CODE.
DATA .
'<XTRA

SEGKEHT
SEGKEHT
SEGKEHT

51ZE-a127H PARA PUBLIC 'cod.'
SIZE-117'H PARA PUBLIC 'Dete'
SIZE-12BIH PARA

As you may have noted in the preceding illustration a classname follows the reloca
tion information. That class name is indicated by single quotes.

CODE.
DATA .

SECKEHT
SEGKEHT

51ZE-a127H PARA PUBLIC 'cod.'
SIZE-B17'H PARA PUBLIC 'Dete'

If your symbol type is a variable or label, the Attribute field contains the name of
the segment with the symbol definition.

INIT ...
INIT_LOOP
INITIAL .
ITOP ...

L FAR
L HEAR
Y B'l'TE
Y IIORD

BBa2H
BlB7H
BBIBH
.16DH

CODE
CODE
DATA
DATA

If your symbol type is RECORD, the Attribute field indicates the number of bytes
and number of bits (the width) required for that record.

R17 . . . RECORD

4-9

List File And The Errorprint File MCS-86 Assembler

4-10

The following table summarizes the information that can be found and interpreted
in the symbol table.

Table 4-1. Symbol Table Information

NAME TYPE VALUE ATTRIBUTES

LNEAR offset from 1. segment name or group name
LFAR segment in
V BYTE which it was
VWORD defined (in
V DWORD hex)
VABS

2. PUBLIC or EXTRN or blank

NUMBER value of nbr 1. RELOC or blank
(in hex) 2. PU BLiC or blank

SEGMENT 1. SIZE=nnnnH
2. relocatability: blank

UNDEFINED
PUBLIC
ABS
MEMORY
STACK
COMMON

3. align type: PARA=paragraph

PAGE
INPAGE
BYTE
WORD

4. classname:
, ---,

REG any register

CMACRO /I DEFS=nnn(decimal)

UNDEFINED

GROUP every segment explicitly defined or
SEG :extrnname

RECORD 1. "SIZE"=/I of bytes, either 1 or 2
2. "WIDTH"=' of bits, 1-16

RFIELD Shift count 1. record name
(2 digits) 2. "WIDTH"=n or UNDEFINED

EQUATE(You can EQUate to any of the above or to any address expression)

V BYTE offset 1. segment
VWORD 2. override attribute, "xx:", where xx is

the segment register
V DWORD 3. indexing attribute "[]": [DI],[BP],

[BX],[SI],[BX+SI],[BP+SI],

[BX + DI],[BP + SI]with or without [...]

MCS-86 Assembler List File And The Errorprint File

The Errorprint File
If you selected ERRORPRINT as a control with assembler invocation, then all
source lines containing errors, and the error messages plus an error summary are
sent to a file or a device (whichever you specified).

This is how it appears

1515·11 MCS·86 ASSEMBLER V1.0 ASSEMBLY OF MODULE BAD
OBJECT MODULE PLACED IN BAD.OBJ
ASSEMBLER INVOKED BY: :F1:ASM86 BAD.SRC ERRORPRINT(:F1:BAD.ERR)

LOC OBJ LINE SOURCE

0000 9090909090 1 MOV AL,100H
••• ERROR #74, LINE #1, OPERANDS DO NOT MATCH THIS INSTRUCTION

ASSEMBLY COMPLETE, 1 ERROR FOUND

The format of the ERRORPRINT information is identical to that of the list file.

If you selected the console device as output for ERRORPRINT the format is similar
to the list file format with the exception of all the header information. Here is how it
looks on the console device.

0000 9090909090 1 MOV AL,100H
... ERROR #74, LINE #1, OPERANDS DO NOT MATCH THIS INSTRUCTION

ASSEMBLY COMPLETE,1 ERROR FOUND

If you selected the console device for output and no errors were detected this is the
message that displays

ASSEMBLY COMPLETE, NO ERRORS FOUND

4-11

APPENDIX A
ERROR MESSAGES AND RECOVERY

In keeping with the high-level nature of the MCS-86 assembly language, ASM86
features an advanced error-reporting mechanism. Over 100 English-language
messages are provided. Some messages pinpoint the symbol, character, or token at
which the error was detected. Error messages are inserted into the listing after the
line on which they were detected. They are of the following format:

***ERRORfm, LlNEfn, message

where m is the error number, n is the number of the line on which the error occurred,
and "message" is the English message corresponding to the error number. If the
error is detected in pass 2, the clause "(PASS 2) .. precedes the message. Errors
numbered less than 800 are ordinary, non-fatal errors. Assembly of the error line
can usually be regarded as suspect; but subsequent lines can be assembled correctly.
If an error occurs within a codemacro definition or a record definition, the defini
tion does not take place.

Errors numbered in the 800's are assembler errors. They should be reported to Intel
if they occur.

Errors numbered in the 900's are fatal errors. They are marked by the line
" ••• FATAL ERROR preceding the message line. Assembly of the source
code is halted. The remainder of the program is scanned and listed, but not acted
upon.

Here is a list of the error messages provided by ASM86, ordered by error number.

*** ERROR'1 SYNTAX ERROR AT OR BEFORE "token"

ASM86 contains an internally-encoded grammar of the 8086 assembly language,
and requires your program to conform to that grammar. Many times the syntax
error will be at the token given in the error message; e.g.,

ASSUMECS

gives a syntax error at or before <CR>, meaning the line is missing things at the
end-in this case, a colon followed by a segment name. More often, however, the
assembler will not detect the error until one or more tokens later; e.g.,

AAA DBO

gives a syntax error at "DB". The error is that AAA is already defined as an instruc
tion (ASCII adjust for addition). The assembler interprets the line as an AAA in
struction with "DB 0" as the operand field. Since the keyword "DB" is not a legal
parameter, the "DB" is flagged, even though "AAA" is the user's mistake.

ASM86 treats codemacro, register, and record names as unique syntactic entities;
thus, when you use these kinds of names improperly you will often get a syntax
error. For example,

SS EOU 7

is a syntax error since SS is a register name and thus is syntactically distinct from an
undefined symbol.

A-I

Error Messages And Recovery MCS-86 Assembler

A-2

Some grammatic constructs are larger than single lines; i.e., SEGMENT-ENDS
pairs, PROC-ENDP pairs, and CODEMACRO-ENDM pairs. You can thus get syn
tax errors for lines which by themselves are syntactically correct, but are misplaced
within the program. E.g.,

FOO ENDS ; with no corresponding SEGMENT statement
BAZ ENDP ; with no corresponding PROC statement
DATA SEGMENT ; within a codemacro

Note that you will get a syntax error at an END statement if you have SEGMENT or
PROC statements without corresponding ENDS or ENDP statements.

ASM86 will usually discard the rest of the line when it finds a syntax error. If the
error occurs within a codemacro definition, the assembler exits definition mode.
This will cause your ENDM statement to produce another syntax error, which will
go away when you fix the first error.

*** ERROR #2 OPERANDS DO NOT MATCH THIS INSTRUCTION

This message will occur quite often for those who are not accustomed to symbol typ
ing in the 8086 assembly language. It usually indicates that the type of one of the
operands is inappropriate for the instruction.

For example, the following sequence will generate this error:

BAZDWO
MOV BL, BAZ

Since BAZ is a word variable, it cannot be moved into the byte register BL. You can
correct this error in several ways, depending on what your motivations were. You
could change BAZ DW 0 to BAZ DB O. You could change BL to BX. Or you could
override the type of BAZ:

MOV BL, BYTE PTR BAZ

Another example: if FOO is a procedure name, the instruction

MOV BX,FOO

generates an error, since there is no MOV instruction in the built-in codemacros
whose second operand is a label type. The correct version is

MOV BX, OFFSET FOO

since OFFSET FOO is typed as a number.

MCS-86 Assembler Error Messages And Recovery

To become proficient at avoiding this error, and at understanding this error when it
occurs, you should master the distinction between the types "variable", "label",
and "number". You should then learn how to read the built-in codemacros for the
instruction set. Finally, when you understand the algorithm used for matching in
structions to the codemacro definitions, you will be able to predict the precise code
generated for each instruction.

In some cases, this error reveals instructions not supported by the 8086 hardware.
For example,

FOOSEGMENT
MOV ES, FOO

gives an error because there is no hardware instruction which moves the immediate
number FOO into a segment register. You must re-code:

MOVAX, FOO
MOV ES, AX

*** ERROR #3 INSTRUCTION SIZE BIGGER THAN PASS 1 ESTIMATE

This error occurs when the instruction contains a forward reference, and the
assembler guesses too optimistically about how much code the forward reference
will cause the instruction to generate. There are several situations in which this
happens:

a. The forward reference is a variable which requires a segment override prefix.
For forward references, you must explicitly code the override:

MOV CX, ES:FWD_REF

Otherwise, the assembler will guess that it is not needed.

b. The forward reference is a FAR label. You must explicitly provide the type in
this case:

JUMP FAR PTR FWD_LABEL

Otherwise, the assembler will guess NEAR.

c. You have promised SHORT, or you have used an instruction which takes only
SHORT displacements. You must change your code not to use a SHORT jump.

To minimize the chance of this error, you should avoid forward references as
much as possible. Declare your variables and externals at the top of your
modules; try to arrange your program so that FAR labels come first.

*** ERROR #4 INSUFFICIENT TYPE INFORMATION TO DETERMINE
CORRECT INSTRUCTION

This error occurs when one of the operands to an instruction is a register expression
which does not have a BYTE or WORD attribute attached to it. If one of the other
operands can identify the type, then no error is issued; e.g.,

MOV AX, [BX]
MOV [BX], OFFFEH
MOV BL, [01 + 500]

are all correct because the AX and the OFFFEH indicate that WORD PTR [BX] is
intended, and the BL indicates that BYTE PTR [DI] is intended. However,

INC [BX]
MOV [BX],O

A-3

Error Messages And Recovery MCS-86 Assembler

A-4

are both flagged. The 0 does not commit [BX) to being a BYTE or a WORD
memory location. You must specify BYTE PTR [BX] or WORD PTR [BX] for both
instructions.

*** ERROR #5 OPERAND NOT REACHABLE FROM SEGMENT REGISTERS

This error occurs when you do not use the ASSUME statement correctly. Every time
you reference a variable, the segment in which that variable occurs must be AS
SUMEd to be reachable from one of the segment registers. For example, the
program

FOOSEGMENT
BAZDWO
MOVAX, BAZ
FOO ENDS
END

will produce this error, since BAZ cannot be reached from any of the registers. The
line

ASSUME DS:FOO

at the top of the program will eliminate the error.

For most programs, a single ASSUME statement at the top of the program for each
of the four segment registers CS,DS,ES, and SS will suffice.

If you want more than one segment to be reachable from the same segment register
at the same time, you must GROUP the segments together, and ASSUME the group
to be reachable.

*** ERROR #6 CANNOT JUMP NEAR TO A LABEL
WITH A DIFFERENT CS-ASSUME

This error detects the following inconsistency in your program: You demand a
NEAR jump to another section of code. NEAR jumps do not change the CS
register. Yet the other piece of code is expecting the CS regi~ter to have a different
value than the code from which you are jumping. You must either make a FAR
jump, or change your CS-assumes so they are consistent.

*** ERROR #7 NO CS-ASSUME IN EFFECT-NEAR LABEL
CANNOT BE DEFINED

The assembler must store the CS-assume associated with each label It needs this in
order to instruct the LINK program to generate the correct displacement for NEAR
jumps between different segments of the same group. For most programs, a single
ASSUME statement at the top of the code will suffice.

*** ERROR #8 NO CS-ASSUME IN EFFECT-NEAR JUMP
CANNOT BE GENERATED

This is a special case of error 6: you are missing a CS-assume.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #9 DEFAULT SEGMENT CANNOT BE OVERRIDDEN

This is a signal that you have attempted to violate a hardware limitation in the string
imperatives which involve the DI register. The hardware does not allow for any
override of the default ES register; thus the assembler requires the operand to the in
struction to be reachable from the ES register. The facility is implemented via the
NOSEGFIX directive included in the appropriate codemacros.

*** ERROR #10 LABEL CANNOT BE USED AS A VARIABLE
(NO COLON ALLOWED)

This error occurs when you put a colon on the label to a storage initialization line;
e.g.,

FOO: DB3

The assembler assumes that you probably want FOO to be a variable in this context,
and requires you to make it so by removing the colon. If you understand the dif
ference between a variable and a label, and you still want FOO to be a label, you
could make it so by placing it by itself on the line above the DB.

*** ERROR #11 ILLEGAL LABEL TO THIS DIRECTIVE
(NO COLON ALLOWED)

This error is reported when a label with a colon appears on a GROUP, PROC,
RECORD, or SEGMENT directive. These directives call for a label without a colon.

*** ERROR #12 THIS DIRECTIVE REQUIRES A LABEL (WITHOUT A COLON)

This error is reported for a missing label to a GROUP, PROC, RECORD, or SEG
MENT declarative.

*** ERROR #13 THIS DIRECTIVE DOES NOT ACCEPT A LABEL TO ITS LEFT

This error is called for lines on which no label is allowed: ASSUME,
CODEMACRO, EXTRN, NAME, ORG, PURGE, and PUBLIC.

*** ERROR #14 LABEL IS NOT REACHABLE
FROM CS-WILL NOT BE DEFINED

This happens when you have no ASSUME for CS, or when your CS-ASSUME is for
a segment other than the one you are assembling. For example, if FOO is a segment,

ASSUME CS:FOO
BAZ SEGMENT
GORN PROC

is illegal-the assembler does not know what offset to generate for the label GORN,
since GORN's segment BAZ is not ASSUMEd to be in the CS register. To correct
this error, you can either provide an ASSUME CS:BAZ, or group FOO and BAZ
together, and ASSUME that CS contains the group, as follows:

A-5

Error Messages And Recovery MCS-86 Assembler

A-6

FOOBAZGROUPFOO,BAZ
ASSUME CS:FOOBAZ
BAZSEGMENT
GORN PROC

*** ERROR #15 ALREADY DEFINED SYMBOL,
THIS DEFINITION IGNORED FOR "symbol"

This error is given when a symbol has an illegal multiple definition. To avoid.confu
sion, we suggest that you usually correct this error by using a different name for one
of the symbols, instead of using PURGE.

*** ERROR #16 ALREADY EQUATED SYMBOL,
THIS DEFINITION IGNORED FOR "symbol"

This is identical to case 15, except that the quoted name has appeared EQUated to a
forward reference name which has not yet been resolved.

*** ERROR #17 ARITHMETIC OVERFLOW IN EXPRESSION OR LOCATION
COUNTER

This error is reported whenever a 17-bit calculation takes place whose answer is not
in the bounds -65535 to 65535. Notable particular instances of this include:

a. User expressions with large answers or intermediate
values

b. Division by zero

c. Oversize constants

d. Overflow of the location counter

*** ERROR #18 ILLEGAL CHARACTER IN NUMERIC CONSTANT

Numeric constants begin with decimal digits, and are delimited by the first non
token character (not alpha, numeric, 'I', '@', or '_'). The set of legal characters
for a constant is determined by the base:

a. Base 2: 0,1, and the concluding 'B'.

b. Base 8: 0-7, and the concluding '0' or 'Q'.

c. Base 10: 0-9, and the optional concluding 'D'.

d. Base 16: 0-9, A-F, and the concluding 'H'.

*** ERROR #19 ABSOLUTE,
NON-FORWARD-REFERENCE NUMBER REQUIRED

This error is reported in cases where the absolute number expected cannot be com
pletely computed at pass 1 assembly time. Note that this excludes relocatable
numbers. The situations where this is required include:

a. A SEGMENT directive with an AT.

b. A DUP count.

c. Widths and defaults in a RECORD definition.

d. Range specifiers in a CODEMACRO definition.

e. Initialization values in a CODE MACRO definition.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #20 ADDRESS EXPRESSION REQUIRED AS
OPERAND TO THIS OPERATOR

Some expression operators don't make any sense if their operands are not address
expressions (see the MCS-86 Assembly Language Reference Manual for a discussion
of address expressions). These operators include segment override, OFFSET,
bracket combination, subtraction with non-absolute minuend, SEG, TYPE,
LENGTH, and SIZE of a non-record-name.

*** ERROR #21 ILLEGAL OPERANDS TO ADDITION
OR COMBINATION OPERATION

One of the operands to an addition or combination operation has to be either an ab
solute number or an absolute register expression. Note that this error may occur if
the operation is subtraction; since if the right-hand operator is an absolute number it
is negated and then added.

*** ERROR #22 NEGATIVE NUMBER NOT ALLOWED IN THIS CONTEXT

Certain contexts disallow negative numbers. They include:

a. SEGMENT declaratives with AT

b. DUP counts

- *** ERRORS #23,#24 ILLEGAL USE OF REGISTER NAME
OUTSIDE OF BRACKETS

Inside of square brackets, a register can undergo arithmetic; the operations are per
formed on the memory address represented by the bracketed expression. Outside of
the brackets, the arithmetic makes no sense, and is flagged. The example is:

JMP BX + 3

is illegal; write JMP [BX - 3) instead.

*** ERROR #25 SHORT JUMP DISPLACEMENT DOES NOT FIT IN A BYTE

This error occurs in situations where a codemacro is matched, but the parameter
fails to fit when the RelB directive is encountered. Note that this can never happen in
the built-in instruction set, since all RelB directives are for parameters specified Cb;
so the codemacro match would never have been made.

*** ERRORS #26,#27 TWO BASE OR TWO INDEX REGISTERS
BEING COMBINED

The hardware does not support the following sorts of instructions:

MOV AX, [BX + BP)
MOV AX, FOO[SIJ[DI)
MOV AX, [BX + BX)

i.e., at most one base register and at most one indexing register can appear in an in
dexing expression.

A-7

Error Messages And Recovery MCS-86 Assembler

A-8

*** ERRORS #28,#29,#30 BAD OPERANDS FOR RELATIONAL
OR SUBTRACTION OPERATION

Subtraction and relational operations are legal only if the right side is an absolute
number; or if both sides match in all relocation types and attributes. If neither of
these conditions hold, this error is reported.

*** ERROR #31 ILLEGAL CHARACTER: "char"

The quoted character is printable, but it has no function in the 8086 assembly
language.

*** ERROR #32 INSTRUCTION OPERAND DOES NOT HAVE A LEGAL TYPE

The only case is which this error should occur is if you use a record or a record field
name by itself as an operand to an instruction.

*** ERROR #33 MORE ERRORS DETECTED, NOT REPORTED

After the ninth error on a given source line, this message is given and no more errors
are reported for the line. Normal reporting resumes on the next source line.

*** ERROR #34 FORWARD-REFERENCE EQUATE CHAIN MAY NOT
RESOLVE TO A REGISTER OR CODEMACRO

Forward references to codemacros and registers are illegal. This is one situation in
which the error is reported.

*** ERROR #35 CANNOT EQUATE TO EXPRESSIONS
INVOLVING FORWARD REFERENCES

You may equate to simple forward-reference names, or you may equate to expres
sions without forward references, but you cannot do both. E.g.,

FOO EQU BAZ + 1
BAZ EQU 5

is not allowed.

*** ERROR #37 UNDEFINED INSTRUCTION
OR ILLEGAL VARIABLE DEFINITION

This error is reported when you give an undefined label, without a colon, at the
beginning of a line, in a context where it cannot be taken as a variable definition.
Usually this is just a misspelled instruction.

*** ERROR #38 UNDEFINED SYMBOL, ZERO USED

This error is reported when an undefined symbol occurs in an expression context.
The absolute number zero which is used in its place may cause other errors to occur.

MCS-86 Assembler Error Messages And Recovery

* * * ERROR #39 VALU E WILL NOT FIT IN A BYTE

This error is issued for DB lines in which the absolute operand is not in the range
-256 to 255.

* * * ERROR #40 CAN NOT HAVE A VARIABLE OR A LABEL IN A DB

This is another case where a symbol is of the wrong type for the context. Although
conversion to the offset number automatically occurs for DW, it does not occur for
DB-you must explicitly provide the OFFSET operator, and you must be sure that
the resulting number is absolute and small enough.

*** ERROR #41 RELOCATABLE VALUE DOES NOT FIT IN ONE BYTE

The only relocatable numbers acceptable as operands to DB (alone or within
codemacros) are numbers to which HIGH or LOW have been applied.

*** ERROR #42 STORAGE INITIALIZATION EXPRESSION
IS OF THE WRONG TYPE

The only kinds of expressions allowed in initialization lists (i.e., as operands to DB,
DW, DD) are variables, labels, strings, formals, and numbers. Other types will pro
duce this error.

*** ERROR #43 STRING TERMINATED BY END-OF-L1NE

All strings must be completely contained on one line. The ampersand continuation
feature does not work in the middle of a string. The assembler will treat the string as
if you had inserted a quote mark as the last character of your line.

*** ERROR #44 STRING LONGER THAN 2 CHARACTERS
ALLOWED ONLY IN DB

Outside of the DB context, all strings are treated as absolute numbers; hence, strings
of 3 or more characters are overflow quantities. You probably should be using DB.

* * * ERROR #45 STRING CONSTANT CAN NOT EXCEED 40 CHARACTERS

The assembler issues this message and uses the first 40 characters if the string is too
long.

*** ERROR #46 DUP NESTING ALLOWED ONLY TO A DEPTH OF 8

No reasonable program will ever run into this limitation. The kind of line that would
cause it is:

DW 2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(3 DUP(1234H)))))))))

A-9

Error Messages And Recovery MCS-86 Assembler

A-tO

*** ERROR #47 PARENTHESIS NESTING ALLOWED
ON L Y TO A DEPTH OF 8

An example of this error would be:

OW 1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + 2)))))))))

It is not likely that you will run into this limitation in any practical application.

*** ERROR #48 ABSOLUTE OPERAND REQUIRED IN THIS EXPRESSION

Most expression operators require their operands to be absolute numbers. These
operators include unary minus, divide, multiply, AND, MOD, NEG, OR, SHL,
SHR, and XOR.

*** ERROR #49 CANNOT TAKE HIGH OR LOW OF A PARAGRAPH NUMBER

The only kind of relocatable number which can undergo HIGH or LOW is the off
set. The address of a segment does not accept HIGH or LOW. We recommend that
HIGH and LOW be used only in programs translated from 8080 programs; and seg
ment addresses do not occur in such programs in this context.

*** ERROR #50 OPERANDTO HIGH OR LOW MUST BE A VARIABLE,
LABEL, OR NUMBER

Other types of operands (e.g., segment names or record names) are disallowed.

*** ERROR #51 ILLEGAL USE OF A GROUP AS A SEGMENT OVERRIDE

This error should occur only if you attempt to provide a segment override which is a
group name to an expression which already has a segment override which is a group
name. For example,

FOO GROUP A,B,C
BAZ GROUP D,E,F
GORN DWO
OW FOO: BAZ: GORN

*** ERROR #52 SEGMENT OVERRIDE MAY BE APPLIED
ONLY TO AN ADDRESS EXPRESSION

For example, the expression DS:O is illegal. You must convert the number 0 into an
address expression. This can be accomplished via the PTR operator, e.g., OS: BYTE
PTRO.

*** ERROR #53 LEFT OPERAND TO SEGMENT OVERRIDE
HAS AN ILLEGAL TYPE

The left operand to the segment override (colon) operator must be either a segment
register, a segment name, a group name, or SEG of a variable or label.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #54 LABEL CANNOT HAVE INDEXING REGISTERS

If the left operand to PTR is NEAR or FAR, then the right operand may not have
any indexing registers. The 8086 does not support labels with indexing registers (e.g.,
NEAR PTR [BX]).

*** ERROR #55 INVALID EXPRESSION IN SQUARE BRACKETS

The only kind of expression allowed in square brackets is an expression involving
registers and/or numbers. Address expressions and other constructs (e.g., record
names) are not allowed.

*** ERROR #56 VARIABLE AND SUBSCRIPT
MAY NOT BOTH BE RELOCATABLE

Example: if FOO and BAZ are both relocatable numbers, the expressions [BX +
FOO] and BAZ [BX] are both legal; the expression BAZ [BX + FOO] is not, since it
requires the addition of two relocatable quantities.

*** ERROR #57 OPERAND OF WIDTH MUST BE A RECORD
OR RECORD FIELD NAME

WIDTH of anything else has no meaning.

*** ERROR #58 OPERAND OF MASK MUST BE A RECORD FIELD NAME

MASK of anything else has no meaning.

*** ERROR #59 OPERAND TO OFFSET MUST BE A VARIABLE OR LABEL

OFFSET is an operator provided to allow you to convert variables or labels to
numbers. If you get this error message, you probably already have a number.

*** ERROR #60 OPERAND TO LENGTH CANNOT BE A LABEL

LENGTH is intended to give the number of units initialized at a variable definition.
Since labels are associated with instructions and not with storage initializations, it
makes no sense to speak of the LENGTH of a label.

*** ERROR #61 OPERAND TO SIZE CANNOT BE A LABEL

SIZE is intended to give the number of bytes initialized at a variable definition.
Since labels are associated with instructions and not with storage initializations, it
makes no sense to speak of the SIZE of a label.

*** ERROR #62 LEFT OPERAND TO PTR CANNOT BE ZERO

Besides the usual keywords BYTE, WORD, DWORD, NEAR, and FAR, you can
also give a numeric value as a left operand to PTR; e.g., 3 PTR O. This creates a
variable whose constituent unit size (Le., TYPE) is the left operand. However, 0
PTR 4 is illegal, since 0 as a constituent unit size makes no sense.

A-ll

Error Messages And Recovery MCS-86 Assembler

A-12

*** ERROR #63 LEFT OPERAND TO PTR IS OF INVALID TYPE

The only valid left operands to PTR are absolute numbers and the keywords BYTE,
WORD, DWORD, NEAR and FAR (which are synonyms for 1, 2, 4, -1, and -2,
respectively) .

*** ERROR #64 ILLEGAL NEGATIVE TYPE TO PTR, NEAR USED INSTEAD

The only negative numbers allowed as the left operand to PTR are -1 and -2, which
are synonyms for NEAR and FAR. Other negative numbers are converted to
NEAR, and this message is issued.

*** ERROR #65 INVALID RIGHT OPERAND TO PTR

Only variables, labels, numbers, and index-register expressions may appear to the
right of PTR.

*** ERROR #66 CANNOT MAKE A SEGMENT REGISTER
OVERRIDDEN VARIABLE INTO A LABEL

This error occurs when you have a variable with a segment register override as the
right operand to PTR, and NEAR or FAR as the left operand. The resulting com
bination is illegal, since labels cannot be overridden. For example,

FOO DWO
JMP NEAR PTR (ES:FOO)

is illegal: jumps always use the CS register, so the ES override cannot be honored.

*** ERROR #67CANNOT OVERRIDE A LABEL WITH A SEGMENT REGISTER

This, like error #66, is an attempt to create a label with a segment register override.
In this case, the attempt is made via the override operator; e.g.,

LABL: JMP DS:LABL

*** ERROR #68 ILLEGAL OPERAND TO SEG OPERATOR

The operand to SEG as it appears in a GROUP or ASSUME statement must be a
variable or a label; i.e., it must have a segment associated with it.

*** ERROR #69 OPERAND TO SEG HAS NO SEGMENT

The operand to SEG as it appears in an expression must be a variable or a label-if
not, it has no segment associated with it; and SEG therefore has no meaning.

*** ERROR #70 RELOCATION OF LABEL TOO COMPLICATED

In practical programs, you should never see this error. An example of what it takes
to produce it is:

JMP GROUPNAME:SEGNAME:FOO

where Faa is a label in a segment whose offsets require relocation.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #71 SOURCE LINE CANNOT EXCEED 128 CHARACTERS

The only effect of this mistake is that the excess characters are not listed-the line is
otherwise processed correctly.

*** ERROR #72 ATTEMPT TO SHIFT A RELOCATABLE VALUE

This error results when a relocatable value is passed as an operand to an instruction
whose codemacro shifts the operand before outputting it. It does not make sense to
shift a relocatable value.

*** ERROR #73 CANNOT PUT A RELOCATABLE VALUE INTO A RECORD
OR MODRM FIELD

This error results when a relocatable value is passed as an operand to an instruction
whose codemacro squeezes the operand into a record field or a MODRM field. It
does not make sense to extract fields from relocatable values.

*** ERROR #74 STARTING ADDRESS MUST BE A LABEL

The starting address of the program, given as an optional operand to the END state
ment, is the point to which the loader of the program will jump. As such, it must be
a label (and not, for example, a variable or a number).

*** ERROR #75 UNDEFINED RIGHT SIDE OF EQU

The left side will in this case remain undefined.

*** ERROR #76 RIGHT SIDE OF EQU IS OF ILLEGAL TYPE

Only simple names and expressions are allowed on the right side of EQU. An ex
ample of a wrong type is: FOO EQU 'STRING'

*** ERROR #77 CANNOT EQU SYMBOL TO ITSELF

The example FOO EQU FOO is illegal.

*** ERROR #78 CIRCULAR CHAIN OF EQUATES

An example is:

FOOEQU BAZ
BAZ EQU FOO

*** ERROR #79 LEFT SIDE OF EQU ALREADY DEFINED,
THIS EQU IGNORED

Only previously undefined or purged names can appear to the left of EQU.

A-13

Error Messages And Recovery MCS-86 Assembler

A-14

*** ERROR #80 SYMBOL NOT IN USER SYMBOL TABLE,
CANNOT BE PURGED

The user symbol table contains not only user symbols, but also the instruction set
codemacros, the registers, and the built-in segment ??SEG. Any of these names can
be purged. Assembler keywords (e.g., DB, EXTRN, BYTE, PUBLIC, AT, SEG,
RELW, DUP, etc.) appear in another table and cannot be purged. If you get this
message, your symbol 4s either an assembler keyword, was never defined, or was
already purged.

*** ERROR #81 OPERAND TO ORG NOT IN THIS SEGMENT

The operand to ORG can be either an absolute number or a relocatable number. If it
is relocatable, it must be offset-relocatable from the segment currently being
assembled. Such a number is usually had by applying OFFSET to a variable or label
in the current segment; for example,

ORG OFFSET $ + 2

*** ERROR #82 ILLEGAL FORWARD REFERENCE OF A REGISTER

The only time this can happen is if you use EQU to give an alternate name to a
register, but use the alternate name somewhere above the EQU statement. This is
not allowed. You should always put EQUs to registers at the top of your program; in
fact, we recommend that you put all your EQUs at the top of your program.

*** ERROR #83 ALIGN-TYPE DOES NOT MATCH
ORIGINAL SEGMENT DEFINITION

If you have more than one SEGMENT-ENDS pair for the same segment in your
program, they must have the same align-type. For example, you cannot specify one
to be BYTE and the other to be PARA. Note that if you leave the align-type off the
first SEGMENT declaration, that segment has align-type PARA. Therefore, all
subsequent declarations of that segment must have either no align-type or align-type
PARA. It is always acceptable to leave the align-type blank for subsequent SEG
MENT declaratives-the align-type given in the first declarative is used.

*** ERROR #84 COMBINE-TYPE DOES NOT MATCH
ORIGINAL SEGMENT DEFINITION

If you have more than one SEGMENT-ENDS pair for the same segment in your
program, they must have the same combine-type. For example, you cannot specify
the first one to be no combine-type (private), and a subsequent one to be PUBLIC.
It is always acceptable to leave the combine-type blank for subsequent SEGMENT
declaratives-the combine-type given in the first declarative is used.

*** ERROR #85 CLASS DOES NOT MATCH ORIGINAL SEGMENT DEFINI
TION

If you have more than one SEGMENT-ENDS pair for the same segment in your
program, they cannot have differing classes. For example,

FOO SEGMENT 'CODE'
ENDS
FOO SEGMENT 'DATA'
ENDS
is illegal. Note that it is always acceptable to give the class for the first SEGMENT
declarative for a segment, and then leave the CLASS blank for all subsequent
declaratives.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #86 MISMATCHED LABEL ON ENDS OR ENDP

ENDS and ENDP require a label which matches the corresponding SEGMENT and
PROC declaratives. If this error occurs, one of several things could be wrong: You
could have a typographical error. You could have a missing ENDS or ENDP for a
nested SEGMENT or PROC. You could have an error in the corresponding SEG
MENT or PROC line; in which case this error will go away when the other is fixed.

*** ERROR #87 CANNOT HAVE MORE THAN ONE NAME DECLARATIVE

The first NAME declarative is honored and this one is ignored.

*** ERROR #88 TEXT FOUND BEYOND END STATEMENT-IGNORED

This is a warning-there are no ill effects. The extra text appears in the listing but is
not assembled.

*** ERROR #89 PREMATURE END OF FILE (NO END STATEMENT)

There are no ill effects from omitting the END statement, other than this message.
Note that if your program is missing an ENDM, ENDS, or ENDP statement, the
END statement is syntactically invalid and is thus not recognized. This error
message will follow the syntax error message.

*** ERROR #90 RECORD FIELD WIDTH MUST BE BETWEEN 1 AND 16 BITS

Zero-width record fields are disallowed. Widths greater than 16 make no sense, since
the containing record cannot exceed 16 bits.

*** ERROR #91 RECORD WIDTH MAY NOT EXCEED 16 BITS

The record is not defined when this happens.

* * * ERROR #92 DEFAU L T VALU E DOES NOT FIT INTO RECORD FIELD

The default value for the record field is too large: the number of bits needed to
represent the number is greater than the width of the field.

*** ERROR #93 LEFT OPERAND TO DOT OPERATOR
MUST BE A FORMAL PARAMETER

*** ERROR #94 RIGHT OPERAND TO DOT OPERATOR
MUST BE A RECORD FIELD

The dot operator is a special operator allowed in only one context: in codemacros,
with a formal to the left and a record field to the right. Any other usage is an error.

*** ERROR #95 RECORD INITIALIZATION ILLEGAL OUTSIDE OF A
CODE MACRO

This error occurs when the first name on a line is a record name. You could be trying
an initialization, as the message indicates or you could be trying to redefine the
name, not realizing that it is a record name.

A-15

Error Messages And Recovery MCS-86 Assembler

A-16

*** ERROR #96 CODE MACRO NAME ALREADY DEFINED AS SOMETHING
OTHER THAN ACODEMACRO

It is legal to have multiple definitions of a codemacro. In that case, however, all
definitions of the symbol must be codemacro definitions. If the symbol has been
defined as anything else, it cannot be redefined as a codemacro, unless it is first
purged.

*** ERROR #97 TWO FORMALS WITH THE SAME NAME

Within a given codemacro definition, all formals must have a different name.

*** ERROR #98 CANNOT HAVE MORE THAN 7 FORMALS
TO A CODE MACRO

This limitation is imposed by the internal codemacro coding formats.

*** ERROR #99 ILLEGAL SPECIFIER LETTER TO A CODEMACRO FORMAL

The only specifier letters allowed are A, C, D, E, M, R, S, and X.

*** ERROR #100 ILLEGAL MODIFIER LETTER TO A CODEMACRO FORMAL

The only modifier letters allowed are B, D, W, and nothing.

*** ERROR #101 ILLEGAL EXTRA CHARACTERS
AFTER SPECIFIER AND MODIFIER

You have either made a typographical error, or have mistaken the syntax of
CODEMACRO lines.

* * * ERROR #102 ON L Y A, D, R,S SPECIFIERS CAN TAKE A RANGE

Range checking for codemacro matching is done only for parameters which are
numbers or registers.

*** ERROR #103 FORMAL PARAMETER EXPECTED BUT NOT SEEN

In certain contexts in codemacros (i.e., RELB, RELW, SEGFIX, NOSEGFIX, and
MODRM), the only construct allowed is a formal parameter. If it is not seen, this
error is given.

*** ERROR #104 UNDEFINED OR FORWARD REFERENCE
ILLEGAL IN CODEMACRO

All numbers provided in a codemacro definition must be determined in pass 1.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #105 ILLEGAL STORAGE INITIALIZATION CONSTRUCT
FOR A CODEMACRO

This error occurs when an operand to a storage initialization (DB, DW, DD, or
record initialization) is of illegal type; e.g. a record name by itself as an operand
would produce this error.

*** ERROR #106 INSTRUCTIONS NOT ALLOWED IN CODEMACROS,
USE INITIALIZATIONS INSTEAD

This error results when you place an instruction (a codemacro call) within a
codemacro definition. For example,

CODE MACRO NOP
XCHG AX,AX
ENDM

is an error. You must hand-expand the codemacro with the appropriate storage
initialization:

CODE MACRO NOP
DB90H
ENDM

*** ERROR #107 NESTED ANGLE BRACKETS NOT ALLOWED

For example, the construct «0,1>,2> is flagged by this message.

*** ERROR #108 A NULL ENTRY IS LEGAL
ONLY WITHIN ANGLE BRACKETS

The line RECNAME <0,,1> is legal within a codemacro-the default value is used
for the second field. However, outside of a record initialization context: DB 0,,1 the
null entry makes no sense.

*** ERROR #109 DEFINITION TOO BIG FOR INTERNAL BUFFER

The internal storage limit for groups, records, and codemacros is 128 bytes. For
groups, this is a limit of 40 segments. For records, the limit cannot be reached (you
will run into the width limit before this one). The limit for codemacros is not easy to
define; a rough guess is that a codemacro which generates 60 bytes of object code is
near the limit.

*** ERROR #110 RECORD INITIALIZATION TOO COMPLICATED
FOR CODEMACRO ENCODING

The internal codemacro storage formats disallow a record initialization to produce
more than 15 bytes of internal code. What this means externally is complicated to
describe; but if none of your records has more than 7 fields, you should never run
into this limit.

A-17

Error Messages And Recovery MCS-86 Assembler

A-I8

*** ERROR #111 MISMATCHED LABEL ON ENDM

The label on the ENDM directive is optional; if it is given, it must match the cor
responding CODEMACRO name.

*** ERROR #112 TYPE IS ILLEGAL FOR PUBLIC SYMBOL "symbol"

Only variables, labels, and numbers may be declared public. No subscripting or
overrides are allowed.

*** ERROR #113 NO DEFINITION FOR PUBLIC SYMBOL "symbol"

A public symbol must be defined within the program.

*** ERROR #114 CANNOT ASSUME AN UNDEFINED SEGMENT

If a symbol is ASSUMEd into a segment register and is a forward reference, the
assembler always guesses that it is a segment. If the symbol is never defined, it is an
undefined segment. Although this usage of an undefined segment is illegal for
ASSUMEs, it is legal for group definitions.

*** ERROR #115 DUP COUNT MUST BE GREATER THAN 0, 1 USED

The repetition count of a DUP must be greater than O. It is not unusual for this error
to immediately follow error 22.

*** ERROR #800 UNRECOGNIZED ERROR #MESSAGE NUMBER
*** ERROR #801 SOURCE FILE READING UNSYNCHRONIZED
*** ERROR #802 INTERMEDIATE FILE READING UNSYNCHRONIZED
*** ERROR #803 BAD OPERAND STACK RECORD
*** ERROR #804 BAD OPERAND STACK READ REQUEST
*** ERROR #805 BAD OPERAND STACK POP REQUEST
*** ERROR #806 PARSE STACK UNDERFLOW
*** ERROR #807 AUXILIARY STACK UNDERFLOW
*** ERROR #808 BAD AUXILIARY STACK READ REQUEST
*** ERROR #809 BAD OPERAND STACK TYPE IN EXPRESSION
*** ERROR #810 BAD STORAGE INITIALIZATION RECORD
*** ERRORS #812,#813 INSTRUCTION OPERAND HAS IMPOSSIBLE TYPE

Error messages in the 800's should never occur. If you get one of these error
messages, please notify Intel Corporation via the Software Problem Report included
with this manual.

*** ERROR #900 USER SYMBOL TABLE SPACE EXHAUSTED

You must either eliminate some symbols from your program, or break your pro
gram into smaller modules.

*** ERROR #901 PARSE STACK OVERFLOW

This error will be given only for grammatical entities far beyond the complication
seen in normal programs.

MCS-86 Assembler Error Messages And Recovery

*** ERROR #902 OVERFLOW IN OPERAND STACK-TOO MANY ELEMENTS

This error typically occurs when a list of storage initialization elements is too long
about 20 elements, depending on the complication of the last elements. You can cor
rect this by breaking your initialization up into several lines.

*** ERROR #903 OVERFLOW IN OPERAND STACK-ELEMENTS
TOO COMPLICATED

This error is similar to error 902. You should break your list of elements into several
lines.

*** ERROR #904 AUXILIARY STACK OVERFLOW

This error indicates that one of ASM86's minor stacks has overflowed. This can
come about through excessively complicated storage initialization operands; or by
excessively deep nesting of SEGMENTs and PROes.

*** ERROR #905 INTERMEDIATE FILE BUFFER OVERFLOW

This error indicates that a single source line has generated an excessive amount of in
formation for pass 2 processing. In practical programs, the limit should be reached
only for lines with a gigantic number of errors-correcting the other errors should
make this one go away.

A-19

APPENDIX B
LINKING MeS-86 ASSEMBLY LANGUAGE

AND PL/M-86 PROGRAMS

This appendix is directed to the person who is already familiar with PLlM-86 and
the documents related to it. In particular, Chapter 9 in the PLIM-86 Compiler
Operator's Manual provides linking information. If you require a more broad
background of information, turn to the preface for a complete list of those
documents and their order numbers.

The purpose of this appendix is to describe and show how modules coded in ASM86
can communicate with modules in PL/M-86. This means how data may be passed
between such modules to provide parameters for processing and to return the results
of that processing.

The conventions for passing data back and forth are determined by the PLlM-86
language compiler. These conventions, explained in the next pages, include the
stack, the BP register, and the general purpose registers used in specific ways.

PL/M-86 generates object code for three distinct environments called SMALL,
MEDIUM, and LARGE models of computation; this fact places additional con
straints on the assembly language programmer. The constraints that are unique to
these three environments are described AFTER the conventions which are common
to all. The examples at the end of this appendix illustrate all the models of
computation.

Conditions and Conventions Common To All Models
of Computation
1. The parameters are all passed on the stack.

2. When there are parameters, they must be pushed onto the stack prior to the call
instruction, in the left-to-right order named in the PLlM-86 procedure declara
tion. For example, if the MCS-86 assembly language program is calling a
PLlM-86 program as follows:

P: Procedure (Parm1, Parm2, Parm3) PUBLIC;

then ParmI must be pushed first, Parm2 second, Parm3 third. This is the order
PLlM-86 expects to find them on the stack, when this procedure is CALLed.
This is also the order PL/M-86 supplies them on the stack when it executes a
CALL to any procedure.

Therefore when a PLlM-86 program CALLs an ASM86 procedure, the left-to
right order of the operands (parameters) in the PLlM-86 CALL must corre
spond to the first-to-Iast order expected by the ASM86 procedure.

Word parameters are pushed as words. The convention for passing bytes is to
put the byte value in the low byte of the word pushed onto the stack. This is
what your ASM86 procedure must expect for byte parameters from PLlM-86
calls, and also what it must supply if it passes bytes to a PLlM-86 procedure.

When doubleword pointers are passed (MEDIUM or LARGE models only), the
segment word is pushed onto the stack first, followed by the offset word.

3. PL/M-86 expects the stack to look the same after a procedure returns as it
looked before the parameters were pushed. Therefore an ASM86 program
CALLing a PLlM-86 procedure should expect the stack upon return to no
longer have the parameters available, because the PLlM-86 procedure adjusted
SP. Furthermore, a CALLed ASM86 procedure may return by using the state
ment RET N, where N is the number of BYTES occupied by the parmeters

B-1

Linking MCS-86 Assembly Language And PLlM-86 Programs MCS-86 Assembler

B-2

passed. This will restore the stack to its condition prior to the CALL, by in
crementing SP. Note that in the SMALL case, N is always twice the number of
parameters. In the MEDIUM and LARGE cases, however, N must be the sum
of four times the number of pointers passed, plus twice the number of non
pointers, because pointers in those environments are 4 bytes instead of 2.

4. PL/M-86 uses the BP register to address the stack. A CALLed procedure in
ASM86 must be sure to save this value if BP will be used in the procedure, and
to restore that value prior to returning control to the PL/M-86 program that
CALLed it.

5. Except for functions (see rule 6), PL/M-86 considers all general purpose
registers except SP and BP to be volatile, i.e., their contents need not be saved
and restored. Consequently, a CALLed procedure in ASM86 is free to use such
registers without considering their prior contents. An ASM86 program CALL
ing a PL/M-86 procedure cannot expect the contents of these registers to be
preserved. Instead, it must save what it needs prior to CALLing the procedure.

6. PL/M-86 expects to receive and provide return values (function results) in
certain registers depending on the TYPE of procedure, as follows:

Procedure Type

BYTE
WORD
INTEGER
POINTER (SMALL)
POINTER (MEDIUM,LARGE)
REAL

Result Returned In

AL
AX
AX
BX
ESand BX
top of RMU' stack

*RMU, the real math unit is documented in the PLI M-86 Compiler Operator's Manual

7. In all models, if an ASM86 procedure expects to be called by a PLlM-86
program and the procedure needs to alter any segment registers, except ES, it
must save the segment register(s) upon entry and restore them prior to the
return. ES is exempt from this rule.

Conditions and Conventions Specific to Each Model
of Computation

Small Model

For the SMALL model of computation, PLlM-86 creates two groups named
CGROUP, containing the CODE segment, and DGROUP containing the DATA,
STACK, CONST, and MEMORY segments. The CS register contains the base ad
dress of the CGROUP and the DS and SS registers contain the base address of the
DGROUP.

To communicate successfully, your ASM86 procedure must be in a segment named
CODE which is PUBLIC and has classname 'CODE',

CODE SEGMENT PUBLIC 'CODE'

This declaration causes your code to be combined with the output of PL/M-86 such
that CALLs and RETurns are NEAR. One consequence of this is the return address
occupies only one word on the stack for SMALL. Another reason for this declara
tion is that, in the SMALL model, PLlM-86 declares all external procedures to be in
the CODE segment.

MCS-86 Assembler Linking MCS-86 Assembly Language And PL/M-86 Programs

Medium Model and Large Model

In these models, all CALLs and RETurns to external procedures are "FAR", using
2 words for the return address on the stack. Therefore you may name the segment
containing your procedure anything you like. PLlM-86 pointer variables are 32-bit
quantities under MEDIUM and LARGE. Pointer parameters in these two models
are stored on the stack with the segment pushed first. The return address is stored on
the stack this same way, segment first, offset last. PLlM-86 procedures in the
LARGE models will save the DS register and restore it upon Procedure exit. A
PUBLIC PLlM-86 procedure will have type FAR and will do a "long" RETurn,
i.e., restoring both the Instruction Pointer and the CS register.

Static Data
Static data means data which is not passed as parameters, but which is around all the
time, that is, local or external.

Local Data

Small and Medium Model of Computation. Data declared in the ASM86 module
must be in the 'DATA' segment. The data segment must be declared as

DATA SEGMENT PUBLIC 'DATA'

;local variable declarations

DATA ENDS

Moreover, PLlM-86 requires that the data segment be contained in the group,
"DGROUP". Dgroup should be declared as

DGROUP GROUP DATA

You need not declare other segments in the group you do not use (e.g., STACK,
CONST,MEMORY).

Large Model of Computation. The data segments for PLlM-86 are non- com
binable segments, i.e., NOT PUBLIC. Therefore, the data can be in a segment with
any name you wish. However, you must be sure to save the segment registers, DS in
particular, before you load them with the address of local segments, since they must
be restored before the procedure returns.

External Data

Small and Medium Models of Computation. Variables declared in PLlM-86
modules will be in either the "CaNST" or in the "DATA" segment. A variable will
be in the "CaNST" segment if it was initialized using the DATA attribute, e.g.,
DECLARE A BYTE DATA (3);. A variable will be in the "DATA" segment if it is
not initialized, or it is initialized using the INITIAL attribute, e.g., DECLARE B
WORD INITIAL (OFFFFH);.

B-3

Linking MCS-86 Assembly Language And PLlM-86 Programs MCS-86 Assembler

B-4

If you know which segment the external data is declared in, then you may wish to
declare that same segment in the ASM86 module. For example, if both A and Bare
in the CONST segment, this is how it might appear:

CONST SEGMENT PUBLIC 'CONST'
EXTRN A: BYTE, B:WORD
CONST ENDS

DGROUP GROUP CONST

ASSUME OS:DGROUP, SS:OGROUP

However, if you don't know what segment the variable is in then you can simply say:

EXTRN A: BYTE, B: WORD

DGROUP GROUP SEG A, SEG B

ASSUME DS:DGROUP, SS:OGROUP

If A and B are both in the CONST segment, then this last example is identical to the
one above it.

The DGROUP contains four segments: CONST, DATA, STACK and MEMORY.
You need only declare the DGROUP with those segments you explicitly reference.

Large Model of Computation. Variables defined with the DATA attribute are
placed in the code segment. The code and data segments cannot be named explicitly.
The reason for this is that PL/M-86 prefixes "DATA" and "CODE" with the
module name, and the two are separated by a dot, e.g., MYPROG.DATA is a large
model data segment. ASM86 does not allow the dot to be a character in the iden
tifier. The data and code segments are non-combinable, NOT PUBLIC. Therefore,
in order to reference external data, variables declared in PLlM-86 modules, you will
have to use "SEG V AR" either as a group member or directly in the assume
statement:

ASSUME OS: SEG A

MCS-86 Assembler Linking MCS-86 Assembly Language And PLlM-86 Programs

PL/H-86 COHPILER

ISIS-II PL/H-S6 COHPILATION OF HODULE PLH86CALLINCSEQUENCES
DeJECT KODULE PLACED IN IF11.XCLftpl .oeJ
CDKPILER INYOKED BVI If3:plfte6 IF11.xCLftpl.pS6 PRIHT(SKALL)

ISMALL MODEL OF COMPUTATION I

2
3
4
5

6 1
7 2

S 2

')

18

11

12

13

14

tCODE
plftS6tcQlllng$s.quences: DOl

DECLARE I BVTE)
PLlM-86 DECLARATION DECLARE J WORD)

DECLARE Ie INTEGER; OFTHE ASM86 PROCEDURE
DECLARE 1 PO HITER;

p: PROCE\>URE (bvCLlulI, wVCLlull. IntvCL\ue. pI/CL\ue) EXTERNAL;
DECLARE bVCL 1 UII BYTE.

WVQ\u. WORD.

END pl

I . IFFHl

BBB2 FA
BaB3 2ESE 16BBaB
BBBS BCBAlI
BIBB SBEC
BIBD 16
BIBE IF
1I1111~ ~D

BBtB CnU6BBFF
.. BFFFFHl

BI15 C7B6BIIIFFFF
Ie • 314151

BBtB C71J6B2BBB77A
1 = tie)

IB21 C716B411B21B
CALL p(l.

8827 BBFF
882') 51
BB2A BSFFFF
8820 :58
BlUE B8B77A
BB31 SB
BB32 88B2BB
BU5 5B
aB36 ESBBlI

8839 FB
BB3A F4

J • Ie. t) ;

eLI
KOY
KOY
KOY
PUSH
POP
aT!

KOY

HOY

KOY

KOY

HOY
PUSH
"OY
PUSH
"OY
PUSH
HOY
PUSH
CALL

BTl
HLT

Intvo.lu. INTEGER.
pI/Glue POINTER;

J BTATEKENT . ')

SS,CS:ttSTACK$FRAKE
SP,ttSTACK$OFFSET
BP,SP
SS
OS

THE CALLING SEQUENCE
I, BFFH

STATEKENT I li1
J,BFFFFH

STATEKEHT I 1 1
K,7AB7H

1 STAT!!"!!"T • lZ

L,DFFSET<K>

STATEMENT. 13
AL. BFFH
AX PUSHi
AX. BFFFFH
A)(1 2 PUSH;
AX.7AB7H
AX 3 PUSHk
AX, OFFSET< K)
AX) 4 PUSHI
P

PL/H-86 CO"PILER PL"86CALLINGSEQUENCES

HODULE INFORKATIOMI

CODE AREA SIZE • IIJ8H 590
CONSTANT AREA SIZE. BBBIH 10
YARIABLE AREA SIZE = BBB7H 70
HAXI"UH STACK SIZE = IBIAH lID
24 LINES READ
B PROGRAK ERROR(S)

EHD OF PL/H-e6 CO"PIL~TI0N

B-5

Linking MCS-86 Assembly Language And PLlM-86 Programs MCS-86 Assembler

B-6

PL/H-B6 COHPILER PLMB6CALLINGSEQUEHCES

ISIS-II PL/"-B6 CO"PILATION OF "ODULE PLH86CALLINGSEQUENCES
OBJECT "ODULE PLACED IN :FI:exQ"pl.OBJ
COMPILER INVOKED BY' 1f'3'pt .. e6 'F"I •• ,. pt.p9' PRINT(MEDIUM) MEDIUM

2
3
4
~

SCODE
pl"86ScQlling$sequence., DO;

DECLARE BYTE;
DECLARE j WORD;
DECLARE k INTEGER I
DECLARE 1 POINTER;

lMEDIUM MODEL OF COMPUTATIONl

I SEE PART (1) OF NOTE I
6 1 pI PROCEDURE (bvQlul, WVQlul. intvQlue. pVCl.lue) EXTERNAL;
7 2 DECLARE bVQ 1 ue BY TE.

wVQlue WORD,
intvQlue INTEGER,

pVCl.lue POINTER;
8 2 END p J

9

lB

11

13

14

8FFH;

8882 F~CALLING SEQUENCE' ; STATEI'IENT • '3

8883 22NOTE: (1) 2 WORDS ARE PUSHED FOR THE POINTER, 1,
BBB8 B I.u..... FIRST DS WHERE DS=SEGMENT (4) AND AX
BBBB B:EC WHERE AX = OFFSET (5). AX WAS LOADED IN THE r-
:::~ !F LINE.t~THATJ$ CIRCLED
BBBF FB
BBI B C6B6B888 (2) A FAR CALL IS ILLUSTRATED

j • 8FFFFH;

B815 C 7868BBBFFFF HOY
k • 3141~;

BBlB C 7B6B2BBB77A "0'0'
1 • 9k;

8821 8 0868288 LEA
8825 8 9868488 "OY
8829 8 CIEII6BB "OY

CALL p(i • j , k, 1) I

BB2D B IFF "OY
11112 F 5 1 PUSH
8B3B B 9FFFF HOY
11833 5 I PUSH
8834 B 9B77A "OY
BII37 5 1 PUSH
BB3B 1 E PUSH
81139 5 /I PUG II
BB3A 9 ABB8BBBBB CALL

PLM96CALLINCGEQUENCES

BB3F FB
8848 F4

STI
HLT

) STATE"ENT • 18
J,8FFFFH

; STATEMENT • 11
K,7A87H

) STATE"ENT • 12

AX.K
L.AX
L+2H,DS

l GTAT"""NT • 11
CL.BFFH
CX ; 1 PUSH i -

PUSHj
CX.8FFFFH
ex) 2
ex.7AB7H
ex ; 3 PUSH k
:~ ; : =:J PUSH I _
P

STATE"ENT • 14

MODULE INFORMATIONI

CODE AREA SIZE
CONSTANT AREA SIZE
YARIA8LE AREA SIZE
MAXII'IUM STACK SIZE
24 LINES READ
B PROGRAM ERROR(S)

• B841H
• B888N
• BBS'H
• B88EN

EHD OF PL/H-86 COHPILATION

650
80
'0

140

MCS-86 Assembler Linking MCS-86 Assembly Language And PL/M-86 Programs

PlPl86CAlLIHCSEQUENCES

ISIS-II PL/PI-8b COPIPILATION OF PlODULE PlPlS6CALlIHCSEQUEHCES
OD"IOCT MODUL.IO PL.ACIOD 1 N . I ~ 1 ' .ODJ

COPIPILER IHYOKED BY: :r3:pt~86 :Fll.xn~pt .p86 PRIHTCLARGE) LARGE

I LARGE MODEL OF COMPUTATIONI
SCODE
pl~86Scnllln9ss.qu.nc.s: DO;

2
3
4
5

I>fCLAltf I ".,T!!)
DECLARE j WORD:
DECLARE k INTEGER:

THE CALLING SEQUENCE r
THE SAME AS FOR MEDIUM

DECLARE t POINTER:

6 1 P' PROCEDURE Cbvnlu., wvnlu., Intvlllu., pvnlu.) EXTERNAL:
7 2 DECLARE bvn t u. BYTE,

wvntu. WORD,

8 2 END P :

I = IFFH;

BBI4 FA CLI
IBB5 2ESE IUIBB PlOY
IBBA BC 18BI PlOY
BBBD 8BEt PlOY
l1li8 F 2ESEIEI211 PlOY
8Bl4 FB STI
BBl5 C6B6B81111FF PlOY

18 = IFFFFH;

BI!Il A C71bBBBIIIFFFF PlOY
11 k = 31415:

BB2B C711161211B77A NOY
12 1 = Ik;

B826 801116121111 LEA
BB2A S'III6I488 PlOY
BB2E 8C 1 E III 688 PlOY

13 CALL pC I, j • k. t);

IB32 Bl FF PlOY
IIH 51 PUSH
BB35 B'FFFF PlOY
BIlB 51 PUSH
IIIBl'J B9B77A PlOY
BB3C 51 PUSH
BB3D IE PUSH
II IU 10 S8 PUSN
BIlF 'JABBBIIBBIil CALL

14

111144 FB S TI

Pl/Pl-86 COPIPILER PlPl86CAllIHCSEQUENCES

B845 F4 HLT

CODE AREA SIZE • BI46H 710
CONSTANT AREA SIZE· BBBSH SO
VARIABLE AREA SIZE. 8IB'H 'JD
PlAXIPlUPI STACK SIZE = BBlSH 160
24 LINES READ
S PROGRAPI ERRORe S)

I ntvn tu. INTEGER,
pvnlu. I"OlHTI!RI

; STATEPIENT I 9

SS,CS:iiSTACKSFRAPlE
SP,IJ'STACKSOFFSET
BP,SP
OS,CS:"DATASFRAPIE

I.IFFH

J,8FFFFH

K.7AB7H

AX,K
l'/~X

l+2H.OS

Cl.OFFH
ex
Cl(.IFFFFH
CX
CX.7AB7H
ex
os
A)(

P

STATEPlEHT liB

STATEPlEHT • 12

STATEI'IEHT I 13
-

PUSHi

2 PUSHj

3 PUSH k
:}- PUSH I

-

STATEPlEHT • 14

B-7

Linking MCS-86 Assembly Language And PLlM-86 Programs MCS-86 Assembler

ISIS-II MCI-a6 ASSEMBLER VI.B ASSEMBLY OF "ODULE EI"PLE
OBJECT MODULE PLACED IN :F5 :EX"PLE .OBJ
ASSEMBLER INVOKED BY: A :FS:EXMPLE.il8b

LOC OSJ L1Nf

1 a
11
12
13
14

SOURCE

;Ex~~ple for 1 Inking S~Qll progrQ~s to Pl/K-86

lThe s~~11 ~odet conSists of t~o groups: CGROUP Qnd DGROUP The ASKS'
;prog~Qft ~ust c~ntQi~ Q d~cIQr~tion of th~ CGROUP lhis group Must b~

;ASSUMEd in tQ the CS r~9i5ter before the beginning of th~ proc~dure.

; If the procedure does not refer~nce any external or local d~tQI then
iuGROUP does flot hCive to be IFicluded It"! the pr·vgrClFl. If, hol.llE'\/£of',
;there are references to loc~l or extern~l d~tQ th~n DGROUP Hust ~lso
;be d~'.:lured und ASSUMEd in to the DS r·t.>9ister. At your opt.ion it
; r'luy b~ ASSUHEd il".to the SS t"'o?9Istei'~

; T~'lo? CGROUP conta.ins oni? segf'tl?fJt, COD~ TYPically, the-t-'l? ,s
;no ne~d to declar~ u CONST segM&nt, unless your progrdh hQS cor.stant
;values. (They ~,ght end up .n ROM.) The DGRDJP cont u .n3 four so?g~ents;

PAGE

1 S ;CONST, [)ATA, i)"T?lCKJ 'lnd MEMORY If local do.t<t sto('uye 15 USE-d, theFt the {JATA

BBBB ')

aaaa

BOB9 S5
aool BBEC
8893 8B4bB4
aBB,; 8B~,EB6

BBB9 8B4E88
BBBC BeBEtlDBB R
Data 8 A 56 BA
D913 C2aSBO

SYMBOL TABLE LISTING

NAME TYPE VAL UE

.)? S£ G SEGMENT
CGROUP. GROllP
CODE SEGMENT
OA7A -:;EGMEtH
DGROUF- G~: 0 UP
LOCRL J i3 iT E SBaeH
p L NEAR OB3BH

16 se~Hent should be ~Eo?d for s~or~ge Include the STACK 5eg~ent only If
, ,
13
I ~
29
21

; you I f.tend to u'::o? t.he st'}CK

CGROUP GROUP CODE
DGROUP GROUP DATA

22 H';SUME CS: CGR-{)tJP, DS:' DGRu:)P

23
24 DAT_ SEG"Et~T
25 10': (a 1 - j OS ~,

26 DATA ENDS
27
28 PuBLIC P
2':;
30 CODE SEGMEHT
31

P ue Ll C -' DATA'

PUBL! C .- COD E J

:MUST BE PUBL1C RNO SHOULD HRVE CLASS
; -·N,;M£ "DATA"
;USED TO HOLD THE LOCAL -J V~LUE

;PUBlIC AND CODE' RRE RE~UIPE0

32 DOES NOTHII~G EXCEPT REFERE~CE THE 4 PARAMETERS N01ICE THAT IT
33 ~VES THE BP AND T~E COPIES SP INTO IT THIS AllO~S THE PAR~MET£RS
34 o BE OBTRINED CON¥fNIEMTLY VIA THE 8P REGISTER
35
36 PROC NERR
37
38 PUSH Sf'
39 MOY BP.SP
4B MOl! AX.cBP+4J
41 MOY BX. (BP'" J
42 NOV CX.c BP+a J
43 MOV 1 oC1l1_J' CL
44 MOV DL. lBP+:3J
45 RET a
46
47
4B
H

ENDP
CODf ENDS

END

ATTRIBUTES

SIZE;3BBBH PARA PUBLIC
CODE
';lZE=001fH PARA P LIB L 1 C . COOl:}
S12~=iHHhH Pi1RA puBLIC ' lIR T A'
i>fi iA
[l~ T~

CODE PUBLIC

; N~AP F-RD[EDIH'£ Sli-ltE 1 TIS BE I i.jG
; -CALLED 8'l ; SMALL J PL/M-8G PROGRAN
;SAVE THE BP REGISTER
;POINT BP AT THE TOP OF THE STACK
: G£ T L
1 i:i~ T K
;M01E J INTO LOCAL STORRGE

:GET r RECALL T~AT ! I~ A BYTE
;RETURH POPPING THE PRR~"ETERS

~SSEMBL1 COMPLETE. NO ERRORS FOUND

B-8

PAGE 2

APPENDIX C
SAMPLE PROGRAM: SENDING

CHARACTERS TO THE CRT

This appendix contains a sample program that is commonly coded. It is intended as
an (immediately usable) illustration of the MCS-86 assembly language.

IICS-S6 ASSEMBLER SOK66P

ISIS-II lIeS-86 ASSEI'IBLER ASSEMBLY OF IIODULE SDK66P
OBJECT I'IOI)ULE PLACED IN 'F4'SI)KSH.OBJ
ASSEf-ISLER INVOKEI) BI" 'F4'A 'F4'SDK86P.A96

LOC 09,) LINE SOURCE

;THIS SOKe6 PROGRAM ECHOS CHARACTERS FROM A KEYBOARD TO A CRT,
;AND GENE~ATES A FREQUENCY OISTPIBUTION OF CHARACTER OCCURENCES.

RAIISEG SEGIIENT AT 38H ;PLACE RAM SEGIIENT AT 388H

PACE

8B6S (128
8B

I
2
3
4
5 FREQNCY DB 128 OUP(B) ; INITIALISE OCCURENCE COUNT ARRAY

B8BS (18
????

BU4

,
7 ow

STKTOP LABEL
RAHSEG ENDS

;TO ZERO
I B oUP<?) ;RESERVE AN AREA FOR THE STACK

WORD ; INTIAL STACK POINTER POSITION

ROMSEG SEGHENT AT 28H ; PLACE ROH SEGI1EHT AT 288H
ASSUI1E CS'ROI1SEG,OS'RAKSEG,SS'RAKSEG,ES'HOTHIHG

EQU BFFBH
EQU BFF2H

;S251A DATA PORT OH SDK86
;8251A STATUS PORT

BHB
BFF2

BBBB 3 BBS

S
9

IB
II
12
13
14
IS
16
17
18
I ~
28
21
22
23
24
25
26
27
29
2~

38
3!
32
33
34
35
36
37
38
H
4B
41
42
43
44
45

USARTOATA
IJSARTSTAT
SETSEG DW RAKSEG ;SEGI'IENT ADDRESS OF BEGIHHING OF RAI1SEG

8BB2 2ESE IEBBSH
BBB? 2ESE HHHBB
BB8C BC~4B8

BBBF EBUBB
8812 SAEB
88!4 ESB5BB
BB17 E81EBB
BUA ESF3

88IC SAF2BF
BBIF EC

BB2B 24BI
8822 74F8
BBH BAFBBF
BB27 8AC4
BBB EE
BB2A C3

882B BAF2BF
BB2E EC
BB2F 24B2
BB,1 74FS
BBll SAFBBF
BBU EC
8837 C3

"CS- 86 ASSEIIBLER

LOC OBJ

BBlS
BB38 32E4
BBlA SBFB

BB3e FEB4
Ba3E C3

BBB2

LINE

4'
47
48
49
5B
51
52
53
54
55
56
57

START' IIOY
KOY
KOY

LOOPI' CALL

C I'

SOURCE

KOY
CALL
CALL
J I1P

AHO
JZ
KOY
KOV
OUT
RET

KOY
IH
AHO
JZ
KOY
IH
RET

COUNT! T PROC
XOR
HOY

INC
RET

COUHT! T EHDP

END

os, CS' SETSEG
SS,SETSEG
SP,OFFSET STKTOP

C I
AH,AL
co
COUNTIT
LOOPI

DX,USARTSTAT
AL,DX

AL, I
CO
oX,USARTDATA
At, AH
OX,AL

DiI,USARTSTAT
AL,oX
At, 2
CI
DX,USARTOATA
AL.. ox

HEAR
AH,AH
S j, AX

FREQNCV[S 11

START

1SET UP DATA SEG"ENT AS IH ASSUHE
;SfT UP STACK SEGKENT
;5fT INITIAL STACK POIHTER VALUE

JREAo CHARACTER TO AL

leOUNT OCCURENCE OF CHARACTER IN AL

IIF USART HOT READY FOR CHARACTER
IIHPUT A BYTE INTO AL WITH PORT.
; IN OX

; THEH WAIT
;ELSE OUTPUT CHARACTER

;IF CHARACTER HOT READY

;THEH WAIT
; ELSE BRI HG IH CHARAe TER

EXPECT CHARACTER IN AL
ZERO AH

PAGE

16 BIT INDEX INTO FREQUENCY TABLE
IH SI
IHCREKENT ARRAY INDEXED BY SI

2

C-l

APPENDIX D
RULES FOR SHORTENING

CONTROLS

Any of the controls mentioned in this book have a legal short form. This appendix
contains these rules. The rules can be used to shorten most of the controls found in
Intel languages. Here are the rules:

• if the control is a one syllable word, use the first two characters;

• if the control is a polysyllabic word, but not a compound word, use the first
character from the first two syllables;

• if the control is a compound word, use the first character from each of the
compounding words; however,

• if the control begins with NO, NO cannot be shortened.

D-l

GLOSSARY I

This glossary contains terms that may have specific Intel 'flavor'; it is intended to be
used as an indicator of the specific usage.

Assembler-a computer program that translates assembly source code into object
code or machine code.

Assembler Language-a source language for the MCS-86 assembler that includes
symbolic machine language statements in which there is generally a direct cor
respondence with the instruction format and data format of the computer.

Assemble-to prepare a machine language program from a symbolic language pro
gram by substituting absolute operation codes for symbolic operation codes and ab
solute or relocatable addresses for symbolic addresses.

Code-a set of machine instructions giving a set of unambiguous rules specifying the
way in which data is to be manipulated.

Console device-that part of the computer used for communication between the
operator or engineer and the computer.

Data-a representation of facts, concepts or instructions in a formalized manner.

Default-the choice among exclusive alternatives made by the system when no ex
plicit choice is specified by the user.

Directive-a command to the assembler that does not generate object code.

Expression-a source language combination of one or more operations and
operands often represented by a combination of terms possibly within paired
parentheses.

File-a collection of related records treated as a unit.

Instruction-a statement that specifies an operation and the values or locations of
its operands.

Listing file-a file that can be printed out, that lists the source language statements
and translations and errors.

LINK86-a program that prepares the output of a language translator for execu
tion. It combines separately produced object modules, resolves symbolic references
among them, and produces code ready for LOC-86.

LOC86-a program that produces executable code.

Models of Computation-a set of expectations as to the location of data, the loca
tion of instruction sequences and the use of registers; various methods of developing
programs specifying arrangment of code, data, stack, constant and memory in the
available memory address space.

Object file-output from the assembler which is itself executable machine code or
ready for further processing to produce executable machine code.

0-1

0-2

Overlay-the technique of repeatedly using the same internal storage during dif
ferent stages of a program.

Pass-one cycle of processing a body of data; ASM86 is a two-pass assembler (this
means that it reads the source code twice).

Source file-a file that constitutes input to a language translator.

Symbol-a manner of referring to a resource of the computer; a representation of
something by reason of relationship, association or convention.

Syntax-the structure of expressions in a language; acceptable input to a program;
can be statements, commands or directives.

Segment-any contiguous block of memory up to 64K (physical segment); a unit of
data and/or code in your assembly program, also, contents of a segment register
(logical segment); the basic unit of relocation and linkage.

Table-a collection of data in which each item is uniquely identified by a label, or by
its position relative to the other items or by some other means.

ASM-86 see Assembler, MCS-86
ASM86I.TMP,2-2
ASM86X. TMP, 2-2
Assembler, MCS-86

controls, 3-1
calling the, 2-1
defaults,2-1, 3-1, 3-2
definition of, G-l
errors, A-I thru A-19
parameters of, 2-1

Assembler language, see Assembly
language, 1-1, G-I

Assembly language, MCS-86, I-I
ATTRIBUTE field, SYMBOL TABLE,

indexing, 4-10
override, 4-10
with SEGMENT, 4-9
with alignment specification, 4-9
with bytes and bits, number of, 4-9
with of classname, 4-9
with relocatability, 4-9
with segment, name of, 4-19

Byte bucket, 3-3

Characters per class name, 2-1
Characters per string, 2-1
Characters per line, 2-1
Characters per ID, 2-1
Code

object, 1-1, see also Obj field, list file
Codemacro, size, 2-2
Console device, I-I, G-I
Controls, 3-1, 3-2, 3-3

how to shorten, D-l
summary of, 3-3

Data, G-l
DEBU G control, 3-1, 3-3
Default operation, 2-1, 3-1, 3-2

definition of, G-I
Directives" 1-1, 4-10

definition of, G-l
Dup resting, 2-2

EQUATE field, 4-5
with REG, 4-5
with colon and square brackets, 4-5
with '#', 4-5
with register number, 4-5
with negative number, 4-6

ERRORPRINT control, 3-1, 3-4

ERRORPRINT
file, 4-11
format, 4-11
format with :co:, 4-11

Errors,
see also LIST file
messages and recovery, A-I thru A-19
noted within list file, 4-6

Expression, G-I
complexity, 2-2

Fields of information, list file, 4-3, 4-7
Files, 1-1,1-2

error, 1-2
input, 1-2
list, 4-1
logical, 1-2
object, I-I
output, 1-2
overlay, I-I
source, 1-2
temporary, 1-2

Glossary, G-I, G-2

Header information, 4-1, 4-7
list file, 4-1
symbol table, 4-7
errorprint file to console, 4-11

Input files, I-I
Instruction, G-I
Intellec MDS, I-I
Invoking the MCS-86 Assembler, 2-1
tSIS-II, I-I
Items/PUBLIC, EXTRN, PURGE, 2-2
Items/GROUP, 2-2
Items/storage initialization list, 2-2

Length, list file, 4-1
LINE field, list file, 4-6

display, 4-6
LINK86, 1-1, G-l
Linking conventions seel PLiM Linking
Linking example, B-8
List file, 4-1 thru 4-10

assembler generated information, 4-3
body of, 4-2
characters per line, 2-2
definition of, G-l
errors reported per line, 2-2
fields of information, see LOC, OBJ,

LINE, ATTRIBUTE fields
lines per file, 2-2

INDEX I

Index-l

Index-2

header of, 4-2
pages per file, 2-2
user generated information, 4-2
width of, 4-2

Location counter see LOC field, list file
LOC field, list file, 4-4

with PROC, 4-4
with Dup construct, 4-4
with SEGMENT, 4-4
with directive, 4-4

LOCAte86, 1-1, G-l

Memory, minimum amount, 1-1, 2-2
Models of Computation, G-I

NAME field, SYMBOL TABLE, 4-8
display of, 4-8

NODEBUG control, 3-1, 3-4
NOERRORPRINT control, 3-1, 3-4
NOOBJECT control, 3-1, 3-3
NOPAGING control, 3-1, 3-3
NOPRINT control, 3-1, 3-3
NOSYMBOLS control, 3-1,3-3

OBJ field, list file, 4-5
with '----',4-5
with E, R, 4-5
with Dups construct, 4-5

OBJECT, 3-1, 3-2, 3-3
OBJECT file, see Files, Object
Output file, see Files Output
Overlay file, see Files Overlay

PAGING control, 3-1, 3-2, 3-3
Pass, 1-1, 1-2, G-I
PLlM-86 Linking, B-1 thru B-4

conventions, common, B-1, B-2
conventions, specific, B-2, B-3
sample program, B-2
small model, B-5
medium model, B-6 .
large model, B-7

PRINT control, 3-1, 3-2, 3-3
PROC/SEG nesting, 2-2

QRL-86, I-I

Record limit, 2-2
Record size, 2-2
Related documents, Preface

Sample Program, C-I thru C-2
Segment, 4-10, G-I

offset from, 4-10
SEGMENT or PROC size, 2-2
SOURCE field, list file,

columns, 4-7
Source file, see Files, Source
Source lines per program, 2-1
SOURCE field, list file, 4-6

expansion of tabls, 4-6
errors embedded in, 4-6

Symbol, G-l
Symbol Table, 4-7

format with PAGING, 4-7
format with NO PAGING, 4-7
header, 4-7
body, 4-7

Symbol Table Information, 4-7 thru 4-9
Table, 4-10

SYMBOLS control, 3-1, 3-2, 3-3
Symbols per module, 2-1
Syntax,

controls, 3-1
definition of, G-l
invoking the assembler, 2-1

Table, G-l
TYPE field, symbol table, 4-8

VALUE field, symbol table, 4-8
with variables and labels, 4-8
with blank value, 4-8
with EXTRN symbols, 4-8
with shift count, 4-8

Wraparound,2-2
Width, list file page, 4-1

MCS™_86 ASSEMBLER OPERATING INSTRUCTIONS FOR ISIS-II USERS
9800641 A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME __ DATE _________________________ _
TITLE ___ __

COMPANYNAME/DEPARTMENT ______________________________________ _
ADDRESS __ __

CITY ________________________________ STATE _________________ ZIPCODE _______________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •••

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications
3065 Bowers Avenue
Santa Clara, CA 95051

11111 NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

